In this research we consider synchronization of oscillators. We use mechanical
metronomes that are coupled through a mechanical medium. We investigate the
problem for three different cases: 1) In passive coupling of two oscillators, the coupling
medium is a one degree of freedom passive mechanical basis. The analysis of the
system is supported by simulations of the proposed model and experimental results.
2) In another case, the oscillator is forced by an external input while the input is
also affected by the oscillator. This feedback loop introduces dynamics to the whole
system. For realization, we place the mechanical metronome on a one degree of
freedom moving base. The movements of the base are a function of a feedback from
the phase of the metronome. We study a family of functions for the reactions of
the base and their impact on the behavior of the metronome. 3) We consider two
metronomes located on a moving base. In this case the two metronomes oscillate
and as the base is not freely moving, they are not directly coupled to each other.
Now based on the feedbacks from the vision system, the base moves and hence the
phases of the metronomes are affected by these movements. We study the space of
possibilities for the movements of the base and consider impacts of the base movement
on the synchronization of metronomes. We also show how such a system evolves in
time.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2010-12-9006 |
Date | 2010 December 1900 |
Creators | Daneshvar, Roozbeh |
Contributors | Zourntos, Takis, Kalm�r-Nagy, Tam� |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | application/pdf |
Page generated in 0.002 seconds