• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synchronization of Mechanical Oscillators: An Experimental Study

Daneshvar, Roozbeh 2010 December 1900 (has links)
In this research we consider synchronization of oscillators. We use mechanical metronomes that are coupled through a mechanical medium. We investigate the problem for three different cases: 1) In passive coupling of two oscillators, the coupling medium is a one degree of freedom passive mechanical basis. The analysis of the system is supported by simulations of the proposed model and experimental results. 2) In another case, the oscillator is forced by an external input while the input is also affected by the oscillator. This feedback loop introduces dynamics to the whole system. For realization, we place the mechanical metronome on a one degree of freedom moving base. The movements of the base are a function of a feedback from the phase of the metronome. We study a family of functions for the reactions of the base and their impact on the behavior of the metronome. 3) We consider two metronomes located on a moving base. In this case the two metronomes oscillate and as the base is not freely moving, they are not directly coupled to each other. Now based on the feedbacks from the vision system, the base moves and hence the phases of the metronomes are affected by these movements. We study the space of possibilities for the movements of the base and consider impacts of the base movement on the synchronization of metronomes. We also show how such a system evolves in time.
2

NOISE SPECTRUM OF A QUANTUM POINT CONTACT COUPLED TO A NANO-MECHANICAL OSCILLATOR

Vaidya, Nikhilesh Avanish January 2017 (has links)
With the advance in nanotechnology, we are more interested in the "smaller worlds". One of the practical applications of this is to measure a very small displacement or the mass of a nano-mechanical object. To measure such properties, one needs a very sensitive detector. A quantum point contact (QPC) is one of the most sensitive detectors. In a QPC, electrons tunnel one by one through a tunnel junction (a "hole"). The tunnel junction in a QPC consists of a narrow constriction (nm-wide) between two conductors. To measure the properties of a nano-mechanical object (which acts as a harmonic oscillator), we couple it to a QPC. This coupling effects the electrons tunneling through the QPC junction. By measuring the transport properties of the tunneling electrons, we can infer the properties of the oscillator (i.e. the nano-mechanical object). However, this coupling introduces noise, which reduces the measurement precision. Thus, it is very important to understand this source of noise and to study how it effects the measurement process. We theoretically study the transport properties of electrons through a QPC junction, weakly coupled to a vibration mode of a nano-mechanical oscillator via both the position and the momentum of the oscillator. %We study both the position and momentum based coupling. The transport properties that we study consist of the average flow of current through the junction, given by the one-time correlation of the electron tunneling event, and the current noise given by the two-time correlation of the average current, i.e, the variance. The first comprehensive experimental study of the noise spectrum of a detector coupled to a QPC was performed by the group of Stettenheim et al. Their observed spectral features had two pronounced peaks which depict the noise produced due to the coupling of the QPC with the oscillator and in turn provide evidence of the induced feedback loop (back-action). Benatov and Blencowe theoretically studied these spectral features using the Born approximation and the Markovian approximation. In this case the Born approximation refers to second order perturbation of the interaction Hamiltonian. In this approximation, the electrons tunnel independently, i.e., one by one only, and co-tunneling is disregarded. The Markovian approximation does not take into account the past behavior of the system under time evolution. These two approximations also enable one to study the system analytically, and the noise is calculated using the MacDonald formula. Our main aim for this thesis is to find a suitable theoretical model that would replicate the experimental plots from the work of Stettenheim et al. Our work does not use the Markovian approximation. However, we do use the Born approximation. This is justified as long as the coupling between the oscillator and QPC is weak. We first obtain the non-Markovian unconditional master equation for the reduced density matrix of the system. Non-Markovian dynamics enables us to study, in principle, the full memory effects of the system. From the master equation, we then derive analytical results for the current and the current noise. Due to the non-Markovian nature of our system, the electron tunneling parameters are time-dependent. Therefore, we cannot study the system analytically. We thus numerically solve the current noise expression to obtain the noise spectrum. We then compare our noise spectrum with the experimental noise spectrum. We show that our spectral noise results agree better with the experimental evidence compared to the results obtained using the Markovian approximation. We thus conclude that one needs non-Markovian dynamics to understand the experimental noise spectrum of a QPC coupled to a nano-mechanical oscillator. / Physics
3

Stabilita zpětně-vazebních řízení dynamických systémů s časovým zpožděním / Stability of Time Delay Feedback Controls of Dynamical Systems

Lovas, David January 2020 (has links)
Tato diplomová práce pojednává o stabilitě zpětně-vazebných řízení dynamických systémů s časovým zpozděním, speciálně řízení mechanických oscilátorů. Dva základní druhy řízení jsou užity v lineárních systémech. Dále je zde ukázána synchronizace dvouprvkových systémů užitím zpětně-vazebných řízení. Práce se také zabývá funkcí v MATLABu pro řešení zpožděných diferenciálních rovnic.
4

New attempts for error reduction in lattice field theory calculations

Volmer, Julia Louisa 23 August 2018 (has links)
Gitter QCD ist ein erfolgreiches Instrument zur nicht-perturbativen Berechnung von QCD Observablen. Die hierfür notwendige Auswertung des QCD Pfadintegrals besteht aus zwei Teilen: Zuerst werden Stützstellen generiert, an denen danach das Pfadintegral ausgewertet wird. In der Regel werden für den ersten Teil Markov-chain Monte Carlo (MCMC) Methoden verwendet, die für die meisten Anwendungen sehr gute Ergebnisse liefern, aber auch Probleme wie eine langsame Fehlerskalierung und das numerische Vorzeichenproblem bergen. Der zweite Teil beinhaltet die Berechnung von Quark zusammenhängenden und unzusammenhängenden Diagrammen. Letztere tragen maßgeblich zu physikalischen Observablen bei, jedoch leidet deren Berechnung an großen Fehlerabschätzungen. In dieser Arbeit werden Methoden präsentiert, um die beschriebenen Schwierigkeiten in beiden Auswertungsteilen des QCD Pfadintegrals anzugehen und somit Observablen effizienter beziehungsweise genauer abschätzen zu können. Für die Berechnung der unzusammenhängenden Diagramme haben wir die Methode der exakten Eigenmodenrekonstruktion mit Deflation getestet und konnten eine 5.5 fache Verbesserung der Laufzeit erreichen. Um die Probleme von MCMC Methoden zu adressieren haben wir die rekursive numerische Integration zur Vereinfachung von Integralauswertungen getestet. Wir haben diese Methode, kominiert mit einer Gauß-Quadraturregel, auf den eindimensionalen quantenmechanischen Rotor angewandt und konnten exponentiell skalierende Fehlerabschätzungen erreichen. Der nächste Schritt ist eine Verallgemeinerung zu höheren Raumzeit Dimensionen. Außerdem haben wir symmetrisierte Quadraturregeln entwickelt, um das Vorzeichenproblem zu umgehen. Wir haben diese Regeln auf die eindimensionale QCD mit chemischem Potential angewandt und konnten zeigen, dass sie das Vorzeichenproblem beseitigen und sehr effizient auf Modelle mit einer Variablen angewendet werden können. Zukünftig kann die Effizienz für mehr Variablen verbessert werden. / Lattice QCD is a very successful tool to compute QCD observables non-perturbatively from first principles. The therefore needed evaluation of the QCD path integral consists of two parts: first, sampling points are generated at which second, the path integral is evaluated. The first part is typically achieved by Markov-chain Monte Carlo (MCMC) methods which work very well for most applications but also have some issues as their slow error scaling and the numerical sign-problem. The second part includes the computation of quark connected and disconnected diagrams. Improvements of the signal-to-noise ratio have to be found since the disconnected diagrams, though their estimation being very noisy, contribute significantly to physical observables. Methods are proposed to overcome the aforementioned difficulties in both parts of the evaluation of the lattice QCD path integral and therefore to estimate observables more efficiently and more accurately. For the computation of quark disconnected diagrams we tested the exact eigenmode reconstruction with deflation method and found that this method resulted in a 5.5-fold reduction of runtime. To address the difficulties of MCMC methods, we tested the recursive numerical integration method, which simplifies the evaluation of the integral. We applied the method in combination with a Gauss quadrature rule to the one-dimensional quantum-mechanical rotor and found that we can compute error estimates that scale exponentially to the correct result. A generalization to higher space-time dimensions can be done in the future. Additionally, we developed the symmetrized quadrature rules to address the sign-problem. We applied them to the one-dimensional QCD with a chemical potential and found that this method is capable of overcoming the sign-problem completely and is very efficient for models with one variable. Improvements of the efficiency for multi-variable scenarios can be made in the future.

Page generated in 0.1173 seconds