Mineralstaub und Seesalz sind der Masse nach die häufigsten Aerosoltypen und dominieren den natürlichen Aerosolanteil. Die vorliegende Arbeit untersucht, wie deren optische Eigenschaften durch atmosphärische Prozesse verändert werden.
Im Rahmen der vorliegenden Arbeit wurde ein Drei-Wellenlängen-Polarisationslidar entwickelt, um ferntransportierten Wüstenstaub zu untersuchen. Die der Arbeit zugrunde liegenden Messungen wurden im Rahmen der SALTRACE-Kampagne (Experiment zum Ferntransport von Aerosolen aus der Sahara und Aerosol-Wolken-Wechselwirkung) auf Barbados (13º N, 59º W) in den Jahren 2013 und 2014 durchgeführt. Die Lidarmessungen in Barbados ergaben, dass der Saharastaub nach einem Transportweg von 5000 km über den Atlantik im Mittel (21 Fälle) ein lineares Partikeldepolarisationsverhältnis von 0.25 ± 0.03 bei 355 nm, 0.28 ± 0.02 bei 532 nm und 0.23 ± 0.02 bei 1064 nm aufweist. Im Vergleich mit vorangegangen Messungen in Marokko und auf den Kapverden wurde kein signifikanter Unterschied der Werte bei 355 und 532 nm festgestellt. Lediglich die Abnahme des Depolarisationsverhälnisses bei 1064 nm zwischen Marokko und Barbados deutet auf einen Verlust der größeren Staubpartikel hin, ein Ergebnis, das von flugzeuggetragenen in-situ-Messungen bekräftigt wurde.
Die optischen Eigenschaften von marinen Aerosolpartikeln wurden in Abhängigkeit der relativen Feuchte (RH) gemessen. Zu diesem Ziel wurden die Polarisations- und Wasserdampfmessungen des Lidars mit den Temperaturprofilen der Radiosonde kombiniert. Der Phasenübergang von sphärischen Seesalzpartikeln bei hoher relativer Feuchte zu nichtsphärischen (würfelartigen) Seesalzkristallen bei geringer relativer Feuchte (<50% RH) konnte durch einen starken Anstieg des Partikeldepolarisationsverhältnisses von 0.02 auf 0.12, 0.15 und 0.10 bei 355, 532 und 1064 nm beobachtet werden. Die Bestimmung der Wachstumsfaktoren des Extinktionskoeffizienten bei einem Anstieg der relativen Feuchte von 40% auf 80% ergab 1.94 ± 0.94, 3.70 ± 1.14 und 5.37 ± 1.66 bei 355, 532 und 1064 nm. Die ausschließlich marin geprägten Luftmassen über Barbados Ende Februar 2014 während der SALTRACE-Winterkampagne boten ideale Messbedingungen.
Als weiterer Beitrag zur Charakterisierung der optischen Eigenschaften atmosphärischer Aerosole wurde im Rahmen dieser Arbeit zum ersten Mal der Extinktionskoeffizient und das Lidarverhältnis bei 1064 nm gemessen. Die neue Technik basiert auf der Rotations- Ramanstreuung bei 1064 nm und wurde in einer Zirruswolke getestet, da dort der Extinktionskoeffizient im beobachteten Bereich wellenlängenunabhängig ist.:1 Introduction
2 Observations at Barbados
2.1 Meteorological situation at Barbados
2.2 SALTRACE campaign
3 Lidar technique
3.1 BERTHA lidar system
3.2 Mueller-Stokes formalism
3.3 Lidar equation
3.4 Particle backscatter coefficient
3.5 Extinction coefficient
3.6 Linear depolarization ratio
4 Results and Discussion 2
4.1 First publication:
Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados
during SALTRACE in 2013 and 2014
4.2 Second publication:
Dry versus wet marine particle optical properties: RH dependence of depolarization
ratio, backscatter, and extinction from multiwavelength lidar measurements
during SALTRACE
4.3 Third publication:
1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling:
cirrus case study
5 Summary and Conclusions / Mineral dust and sea salt are the most abundant aerosol types (by mass) dominating the natural aerosol load. The present thesis investigates how their optical properties change due to atmospheric processes.
In the framework of this thesis, a triple-wavelength polarization lidar was developed for studies of desert dust after long-range transport. The measurements included in this thesis were performed in the framework of the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) at Barbados (13º N, 59º W) in 2013 and 2014. In the Saharan dust plumes over Barbados after an atmospheric transport of 5000 km across the Atlantic an average (21 cases) particle linear depolarization ratio of 0.25 ± 0.03 at 355 nm, 0.28 ± 0.02 at 532 nm, and 0.23 ± 0.02 at 1064 nm was measured. When comparing these results to values of previous observations in Morocco and Cabo Verde, no significant change in the depolarization ratio at 355 and 532 nm of Saharan dust was detected. A decrease in the depolarization ratio at 1064 nm between Morocco and Barbados points to a loss of the larger dust particles, a result that was corroborated by air-borne in situ observations.
The optical properties of marine aerosol particles were measured under changing ambient relative humidity (RH). For this purpose the polarization and vapor measurements of the lidar were combined with the temperature profile of the radiosonde. The phase transition from spherical sea salt particles under humid conditions to non-spherical (cubic-like) sea salt crystals under dry conditions (<50% RH) could be observed. A strong increase in the particle depolarization ratio from values around 0.02 to values of 0.12 at 355 nm, 0.15 at 532 nm and 0.10 at 1064 nm for cubic-like marine particles was found. A particle extinction enhancement factor of 1.94 ± 0.94, 3.70 ± 1.14 and 5.37 ± 1.66 at 355, 532 and 1064 nm was observed under pristine marine conditions for an increase in RH from 40% to 80%. The measurements were performed while pure marine conditions prevailed at Barbados during the SALTRACE winter campaign at the end of February 2014.
In the framework of this thesis, as a further contribution to the characterization of the optical properties of atmospheric aerosols, the extinction coefficient and the lidar ratio at 1064 nm were measured for the first time. The new technique is based on rotational Raman scattering at 1064 nm. The new method was tested in a cirrus cloud taking advantage of the wavelength independence (in the 355 – 1064 nm range) of the extinction coefficient.:1 Introduction
2 Observations at Barbados
2.1 Meteorological situation at Barbados
2.2 SALTRACE campaign
3 Lidar technique
3.1 BERTHA lidar system
3.2 Mueller-Stokes formalism
3.3 Lidar equation
3.4 Particle backscatter coefficient
3.5 Extinction coefficient
3.6 Linear depolarization ratio
4 Results and Discussion 2
4.1 First publication:
Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados
during SALTRACE in 2013 and 2014
4.2 Second publication:
Dry versus wet marine particle optical properties: RH dependence of depolarization
ratio, backscatter, and extinction from multiwavelength lidar measurements
during SALTRACE
4.3 Third publication:
1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling:
cirrus case study
5 Summary and Conclusions
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:31875 |
Date | 11 October 2018 |
Creators | Haarig, Ernst Moritz |
Contributors | Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 10.5194/acp-17-10767-2017, 10.5194/acp-17-14199-2017, 10.5194/amt-9-4269-2016 |
Page generated in 0.0027 seconds