Dans cette thèse, nous considérons l'étude et la mise en \oe uvre de différentes approches numériques de résolution de problèmes dits d'approximation linéaire conique, en nous concentrant sur les approches par projections et par optimisation sous contraintes de semi-définie positivité. Un problème d'approximation matricielle consiste dans un espace normé de matrices à chercher la matrice ayant une certaine propriété $\mathcal(P)$, la plus proche au sens de la norme de l'espace, d'une matrice $A$ donnée. Ces problèmes apparaissent dans différents domaines, et ont été étudiés par \textsc(Higham) qui en propose un procédure de résolution consistant en les trois points suivants : existence et unicité des solutions, caractérisation et solution explicite éventuelles, algorithmes efficaces de calculs de ces solutions. Nous nous plaçons dans un cadre euclidien, et considérons les cas où les matrices vérifiant la propriété $\mathcal(P)$ forment un ensemble convexe déterminé par des contraintes affines et coniques. Nous parlons alors d'(\it approximation matricielle linéaire conique). Nous prenons comme exemples d'application deux problèmes d'approximation correspondant à des ensembles connus en Analyse convexe pour leur "bonne" structure, mais pour lesquels la résolution explicite d'un problème d'approximation s'avère ardu. Le premier exemple provient d'applications en Recherche opérationnelle ou en Mécanique quantique, et consiste à trouver la matrice bistochastique la plus proche d'une matrice donnée. Le second problème est celui de la calibration de matrices de corrélation, qui est d'une importance majeure en analyse du risque financier encouru avec un choix de portefeuille d'actions boursières donné. Nous étudions et mettons en \oe uvre pour les problèmes d'approximation matricielle linéaire conique deux approches de nature différente. La première est primale : elle consiste à interpréter le problème comme étant celui de la projection sur un convexe qui est l'intersection de convexes plus simples sur lesquels les projections sont faciles. Cela nous permet de proposer un algorithme de projections alternées, inspiré des modifications apportées par \textsc(Boyle et Dykstra) à l'algorithme classique de Von Neumann. La seconde est de type primal-dual, et s'inscrit dans la lignée des récentes avancées obtenues en optimisation sous contraintes de semi-définie positivité ((\it Semidefinite Programming)). Elle consiste en la mise en \oe uvre d'un algorithme de points intérieurs, en utilisant une démarche novatrice consistant en l'utilisation de directions de recherches de Gauss-Newton, obtenues par gradients conjugués et en l'introduction en fin d'algorithme d'une étape de "crossover" permettant d'obtenir asymptotiquement de la convergence superlinéaire. Nous présentons pour chacun des problèmes d'approximation pris en exemples des résultats numériques illustrant les différentes approches ci-dessus et les comparant entre elles de différents points de vue. En application, nous proposons aussi une généralisation de la procédure d'agrégation de préférences de \textsc(Blin) en utilisant l'approximation par matrices bistochastiques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00005469 |
Date | 29 September 2003 |
Creators | TAKOUDA, Pawoumodom Ledogada |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds