Agricultural production in Sweden account for a large contribution of the territorial GHG emissions. System optimization, fossil fuel removal and increased circularity is therefore of great importance in order to reach the national net zero emission target by 2045. Biochar production from biomass side flows is a cost-efficient method for carbon dioxide removal which could help to reduce the climate impact of agricultural systems. This study aimed to investigate the potential for climate change mitigation by implementing biochar production from wheat straw at farm level in Sweden. A life cycle perspective was used to assess the climate change impact for production of 1 Mg wheat, with three scenarios for straw management 1) biochar production and application on fields 2) straw incorporation into soil and 3) district heat production. A time distributed LCI was used to include the time dynamics of soil processes. Climate impact was assessed using two metrics: Total GWP100 impact(static) and global surface temperature change (time dynamic). Excess thermal energy from the pyrolysis process was assumed to be used for drying of grains and heating buildings at the farm. The results showed a total GWP100 impact of 214 kg CO2-eq/Mg wheat in the scenario with biochar production, which compare to the impact of 425-429 kg CO2-eq/Mg wheat for the scenarios with conventional straw management practices. The temperature response was ca 50 % lower all throughout the analysed time period, compared to the scenarios with straw incorporation or district heat production. The largest contribution to the impact reduction was achieved from carbon sequestration from biochar application to soil amounting to 223 kg CO2-eq/Mg. A sensitivity analysis of the biochar yield (kg biochar produced per kg of dry mass feedstock) for pyrolysis of straw confirmed that biochar production was preferable over other straw management practices for lower biochar yields as well. In conclusion, utilizing straw for biochar production could have a large potential for reducing the climate impact from wheat production in Sweden. However, a combination of measures for climate change mitigation is needed to reach net zero emissions of wheat production. / Jordbruksproduktionen står idag för en betydande del av Sveriges territoriella växthusgasutsläpp. För att minska jordbrukssektorns klimatpåverkan krävs åtgärder såsom material och energiåtervinning, utfasning av fossila bränslen och elektrifiering. För att nå det nationella klimatmålet om nollutsläpp år 2045 krävs även åtgärder för infångning och lagring av koldioxid. Biokolsproduktion av restprodukter och avfall i form av biomassa är en kostnadseffektiv och lättillgänglig metod för kolinlagring. Pyrolys är en termokemisk process som sker när biomassa upphettas till höga temperaturer utan tillgång till syre. Produkterna från processen är syngas, pyrolysolja och biokol. Processen optimeras utifrån vilka produkter som är önskade och syngas förbränns ofta för att tillföra energi och upprätthålla reaktionen. Biokol används därefter främst som jordförbättringsmedel i planteringar men kan även användas för vattenfiltrering, som fyllnadsmaterial i betong, applicering på åkermark och som tillsatts i djurfoder. Efterfrågan och produktionen av biokol är än så länge relativt liten i Sverige. Då det finns en stor tillgång på biomassa från restprodukter inom jordbruket så finns även en stor möjlighet att minska sektorns klimatpåverkan genom pyrolys och biokolsproduktion. Syftet med denna studie är att undersöka hur implementering av biokolsproduktion från vetehalm skulle kunna bidra till minskad klimatpåverkan från veteproduktion. Studien utförs med ett gårdsperspektiv och har målen att: Identifiera och kvantifiera växthusgasutsläpp för relevanta materialflöden och processer inom veteproduktion. Beräkna klimatpåverkan utifrån ett livscykelperspektiv för produktion av 1 Mg vete under tre scenarion för halmhantering 1) biokolsproduktion och applicering på fält 2) halminblanding i jord 3) energiåtervinning genom produktion av fjärrvärme. Klimatpåverkan, GWP100, beräknades med mätenheten (kg CO2-eq/Mg vete) och beskriver den totala påverkan från de ackumulerade utsläppen över en 100 års tidshorisont som förutsätter att alla utsläpp sker under det första året. För att kunna inkludera ett tidsperspektiv och ta hänsyn till icke-fossila utsläpp av CO2, markprocesser och koncentrationen av växthusgaser i atmosfären över tid, så beräknades även temperaturförändringen av den globala yttemperaturen (K/Mg vete och år), ΔT. Dessa beräkningar utfördes genom att använda tidsdistribuerade utsläpp för en 100 års period och klimatpåverkan, ΔT, beräknades för 150 år. Startåret för beräkningarna och veteproduktionen var satt till år 2019. Gården antogs producera höstvete årligen, utan växelbruk, under en tidsperiod på 20 år. Biokolsproduktion antogs ske på gården och värmeöverskottet antogs användas till torkning av vete och värme till byggnader på gården. En systemexpansion gjordes för att modellera utsläppsminskningen från ett lokalt fjärrvärmeverk där halmen antogs ersätta träpellets producerade av skogsrester. Resultatet visade en klimatpåverkan av 214 kg CO2-eq/Mg vete. för scenariot med biokolsproduktion, 425 kg CO2-eq/Mg vete för scenariot med fjärrvärmeproduktion och 429 kg CO2-eq/Mg vete för scenariot med hamninblandning i jord. För den tidsdynamiska klimatpåverkan hade scenariot med biokolsproduktion en genomgående ca 50 % lägre temperaturpåverkan under hela tidsperioden. Resultatet visade även att kolinlagringen från biokol var den största bidragande faktorn till den minskade klimatpåverkan. Användning av överskottsvärme från pyrolysprocessen hade även ett betydande påverkan till minskade klimatutsläpp. Biokolsproduktion av restprodukten vetehalm har därigenom en stor potential till att minska klimatpåverkan från veteproduktion. Effekten av biomassaomvandlingskvoten för pyrolys av halm (mängd producerad biokol per tillförd mängd biomassa) analyserades genom en känslighetsanalys som fann att biokolsproduktion från halm är fördelaktigt även vid lägre omvandlingskvoter, 20 %. En ökning av biomassaomvandlingskvoten med 5 % kan ge ytterligare en minskning på 16-20 % av de totala utsläppen. Även effekten av jordförbättrande egenskaper som skördeökning och minskade markutsläpp av N2O analyserades. Då biokolsmängden per hektar är relativt låg och antas ge effekt endast ett år, så var dessa effekter på den totala klimatpåverkan försumbara. De ackumulerade effekterna av biokol som jordförbättring undersöktes dock inte, men skulle eventuellt kunna ge en mer betydande effekt. För att bättre kunna analysera klimateffekterna av jordförbättring krävs dock mer forskning om effekter av biokol under svenska odlingsförhållanden över en längre tid. För att dessutom få en mer övergripande bild av potentialen för implementering av biokolsproduktion inom jordbrukssektorn så rekommenderas framtida studier för analys av olika sorters grödor, växtföljder, restprodukter och regioner. Utifrån resultatet dras slutsatsen att gårdsproduktion av biokol från vetehalm har en möjlighet att minska klimatpåverkan från vete med ca 50 % jämfört med annan halmhantering. Biokolsproduktion är även fördelaktigt när tidsdynamiska effekter av utsläppen inkluderas. För att nå en klimatneutral veteproduktion krävs dock även andra åtgärder.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-317267 |
Date | January 2022 |
Creators | Jungefeldt, Louise |
Publisher | KTH, Hållbar utveckling, miljövetenskap och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ABE-MBT ; 22608 |
Page generated in 0.0031 seconds