Return to search

<b>The impact of agricultural conservation practices on water quality in tile-drained watersheds</b>

<p dir="ltr">In the Midwest, tile drainage is used to lower water tables and remove excess water from the soil to improve crop production. This network of underground pipes (i.e., tiles) and expansive agriculture also increases nutrient export, contributing to ecological harm in local lakes and rivers and further downstream in the Gulf of Mexico. Conservation practices that avoid, control, or trap nutrients can mitigate these losses, but studies quantifying their impact at the watershed scale are challenging. This work uses water quality monitoring data collected throughout the Midwest to identify potential nutrient sources and pathways, the hydroclimatic variables influencing them, and the effects of conservation practices. In a study in northeast Indiana, nutrient travel times for total phosphorus, soluble reactive phosphorus, nitrate, and dissolved organic carbon were observed to be faster during winter storm events, likely due to a lack of vegetative processes. Tile drains were the primary contributor to in-stream nitrogen and phosphorus during spring storms but were not a primary contributor for phosphorus in the winter. Data from nitrate sensors across the Midwest were used to quantify the effect of sampling frequency on hysteresis and flushing indices, showing that sampling intervals greater than 8 hours estimates could lead to inaccurate values, and that caution should be used when interpreting outcomes when using longer sampling intervals. Wet antecedent conditions were associated with a dilution pattern of nitrate during storm events, and tile drainage exacerbates this by causing greater leaching during wet periods. A systematic review of water quality monitoring studies at the watershed scale showed the limits using current data, and suggested how providing better statistics could be used to facilitate a more robust meta-analysis to determine effect sizes and sources of heterogeneity among studies. In a monitoring study located in the central Indiana, agricultural conservation practices reduced nitrate concentrations by 27% in an artificially drained watershed. While tile drainage is a critical pathway for nutrients in the Midwest, the combined effect of various conservation practices can improve water quality at the watershed scale.</p>

  1. 10.25394/pgs.26357689.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/26357689
Date25 July 2024
CreatorsNoah R Rudko (19200181)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/_b_The_impact_of_agricultural_conservation_practices_on_water_quality_in_tile-drained_watersheds_b_/26357689

Page generated in 0.0213 seconds