This thesis investigates the possibilities of using hybrid ventilation in an office building in Stockholm. The focus is on simulating the natural airflow to find out for which conditions it is sufficient. The thesis is done at White Arkitekter AB in cooperation and under the supervision of environmental specialists working there. A literature study is carried out to study what has been done before in Sweden as well as in other countries. Computer simulations are used to simulate the airflow to examine the conditions and architecture. A synthetic computer model representing a realistic office building is built up as a starting point. The ventilation method for the natural ventilation part is to take air in through the fa\c{c}ade and use the stack effects in an atrium for natural ventilation. By altering the architecture and the sizes of the openings according to the results from the simulations the building is dimensioned and formed to cope with the rules and requirements about the indoor air quality in workplaces. The simulations are done with a multi zone energy performance simulation tool that can simulate airflows and indoor air climate conditions in the zones as well as the energy consumption. Computational fluid dynamics calculations are then used to more closely simulate the conditions within the zones. The results from those simulations suggest that the natural ventilation as a part of a hybrid ventilation works for all the floors of the building for up to 10$\,^{\circ}\mathrm{C}$. The computational fluid dynamics simulations showed that the thermal comfort of all the occupants is fulfilled for these conditions but there is a risk of occupants experiencing draught because of to high velocities in the air especially for the colder outdoor temperatures. For the higher outdoor temperatures the airflow needs to be enforced to ensure sufficient conditions for the occupants and for the colder temperatures mechanical ventilation is needed to decrease heat losses and avoid the risk of draught.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-146761 |
Date | January 2014 |
Creators | Pálsson, Daði Snær |
Publisher | KTH, Installations- och energisystem |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-IES ; 2014-05 |
Page generated in 0.0019 seconds