Return to search

Mécanismes de régulation de la balance prolifération/différenciation érythroïde par les facteurs de transcription GATA-1, FOG-1, E2F et la voie de signalisation Akt / Control mechanisms of the balance between proliferation and erythroid differentiation by transcription factors GATA-1, FOG-1, E2F and Akt signaling pathway

Avec plus de 100 milliards de globules rouges produits chaque jour, le lignage érythroïde présente la plus grande capacité de production cellulaire chez le mammifère adulte. Cette production requiert une balance fine entre la prolifération cellulaire, régulée principalement par la voie de signalisation érythropoïétine (Epo)/PI3K/Akt, et la différenciation érythroïde induite par le couple de facteurs de transcription GATA-1/FOG-1. Des interconnexions entre ces deux grands systèmes ont été décrites dans le laboratoire : 1) le facteur de transcription GATA-1 est phosphorylé par Akt en réponse à l’Epo et cette phosphorylation semble avoir un rôle dans la différenciation érythroïde ; 2) GATA-1 est capable d’interagir avec la protéine du rétinoblastome pRb, impliquée dans la régulation du cycle cellulaire, et le complexe formé est nécessaire à l’érythropoïèse terminale.L'objectif de ma thèse était d’étudier les mécanismes moléculaires impliqués dans la balance prolifération/différenciation cellulaire au cours de l’érythropoïèse, et en particulier de déterminer le rôle moléculaire et physiologique de la phosphorylation de GATA-1 par Akt en réponse à l’Epo. Nos travaux ont montré que cette phosphorylation est une des clefs de la dynamique de l’érythropoïèse. Dans sa forme non phosphorylée, GATA-1 ralentit le cycle cellulaire via le complexe GATA-1/pRb/E2F. Cette étape préliminaire est nécessaire à la mise en place de la différenciation érythroïde terminale. La phosphorylation de GATA-1 induit d’une part la dissociation de GATA-1/pRb/E2F favorisant l’expansion cellulaire, et d’autre part la formation du complexe GATA-1/FOG-1 nécessaire à l’activation des gènes érythroïdes. Ce modèle apporte une explication moléculaire au blocage de la différenciation érythroïde terminale induite par le mutant GATA-1V205G qui n’interagit pas avec FOG-1. Ainsi, la phosphorylation constitutive de GATA-1V205G et l’augmentation de la quantité relative de FOG-1 permettent de restaurer la différenciation érythroïde induite par ce mutant in vitro. Enfin, l’étude d’un modèle murin exprimant une protéine GATA-1 non phosphorylable par Akt montre l’apparition d’une anémie létale lorsque la voie IGF-1 est inhibée. Cela démontre l’importance de la dynamique moléculaire induite par la phosphorylation de GATA-1, et met en évidence le rôle majeur de l’IGF-1 dans l’érythropoïèse in vivo.En conclusion, nous proposons un nouveau modèle moléculaire de la régulation de la balance prolifération/différenciation érythroïde dans lequel la phosphorylation de GATA-1 par Akt coordonne la distribution de GATA-1 dans deux complexes protéiques fonctionnels différents : GATA-1/pRb/E2F versus GATA-1/FOG-1. Nous mettons également en évidence l’IGF-1 comme acteur central de la compensation mise en place in vivo pour pallier à l’absence de phosphorylation de GATA-1. / With more than 100 billion red blood cells generated every day, the erythroid lineage has the largest output of cell production in adult mammals. This production requires a tight balance between cell proliferation, mainly controlled by erythropoietin (Epo)/PI3K/Akt signaling pathway, and erythroid differentiation induced by GATA-1 and FOG-1 transcription factors. Various links between these two processes have been previously demonstrated in the laboratory: 1) Epo-activated Akt directly phosphorylates GATA-1 transcription factors, and this phosphorylation seems to be involved in erythroid differentiation; 2) GATA-1 binds to the cell cycle regulator retinoblastoma protein (pRb), and the resulting complex is essential for terminal erythropoiesis.We investigated the molecular mechanisms involved in the cell proliferation/differentiation balance during terminal erythropoiesis; in particular, we studied the molecular and physiological role of Epo-induced GATA-1 phosphorylation. Our findings suggest that this phosphorylation is one of the key processes in erythropoiesis dynamics. In its unphosphorylated form, GATA-1 can break cell cycle progression via GATA-1/pRb/E2F complex. This preliminary step is necessary for terminal erythroid differentiation. GATA-1 phosphorylation promotes GATA-1/pRb/E2F dissociation, allowing cell cycle progression, and GATA-1/FOG-1 binding, necessary to activate erythroid genes. Our model provides a molecular explanation for the arrest of terminal erythroid differentiation observed in the non-FOG-1-binding mutant GATA-1V205G. We show that the constitutive phosphorylation of GATA-1V205G and the increase of FOG-1 protein amount rescue erythroid differentiation in vitro. Finally, knock-in expression of unphosphorylatable GATA-1 in mice leads to lethal anemia when the IGF-1 signaling pathway is inhibited. This shows the importance of the molecular dynamics of GATA-1 phosphorylation, and highlights the major role of IGF-1 in erythropoiesis, in vivo.In conclusion, we propose a new molecular model for the control of the balance between proliferation and erythroid differentiation. GATA-1 phosphorylation by Akt coordinates the involvement of GATA-1 in two different functional protein complexes: GATA-1/pRb/E2F and GATA-1/FOG-1. We also highlight the major role of IGF-1 in compensating for the lack of GATA-1 phosphorylation in vivo.

Identiferoai:union.ndltd.org:theses.fr/2013PA11T010
Date18 March 2013
CreatorsLefevre, Carine
ContributorsParis 11, Chretien, Stany
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0121 seconds