• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 1
  • Tagged with
  • 20
  • 20
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle de la chaperonne HSP 70 dans l'éythropoïèse inefficace des béta-thalassémies majeures / Role of the chaperone Hsp70 in beta-thalassemia major (β-TM) ineffective erythropoiesis

Arlet, Jean-Benoît 01 July 2013 (has links)
L’érythropoïèse inefficace joue un rôle central dans la physiopathologie de l’anémie des β-TM. Ses caractéristiques sont triple: accélération de la différenciation érythroïde, arrêt de maturation au stade d’érythroblaste polychromatophile et mort par apoptose à ce stade de différenciation. Les mécanismes précis de cette apoptose et de l’arrêt de la maturation n’ont pas encore été élucidés. Il a été montré, au cours de l’érythropoïèse physiologique, que la protéine chaperonne Hsp70, en se localisant dans le noyau des érythroblastes en cours de différenciation, protège GATA-1 (facteur de transcription érythroïde majeur) de sa destruction par la caspase-3. Cette enzyme clé de l’apoptose est en effet activée physiologiquement au cours de la différenciation érythroïde et peut cliver GATA-1. Notre travail se base sur l’hypothèse suivante : Hsp70 pourrait, au cours de l’érythropoïèse des β-TM, être séquestrée dans le cytoplasme des érythroblastes matures (stade d’une intense hémoglobinisation) afin d’exercer son rôle de chaperonne des chaînes d’α-globine libres. Cela aurait comme conséquence néfaste l’absence de localisation nucléaire d’Hsp70 et, en conséquence, la destruction de GATA-1 à l’origine de l’arrêt de maturation et de la mort cellulaire. Nous avons montré dans ce travail qu’Hsp70 était localisée principalement dans le cytoplasme des érythroblastes matures dans la moelle de patients β-TM, avec un défaut d’expression nucléaire. Par ailleurs, GATA-1 n’est plus exprimé dans ces cellules. Nous avons confirmé ces résultats dans un système de culture cellulaire érythroïde humaine en milieu liquide reproduisant les étapes de la différenciation érythroïde terminale. Une intéraction physique directe entre Hsp70 et l’α-globine a été identifiée par techniques de microscopie confocale, d’immunoprécipitation et de double hybride. Enfin, la transduction dans les érythroblastes de β-TM d’un mutant d’Hsp70-S400A, principalement nucléaire, ou d’un mutant de GATA-1 non clivable par la caspase-3 corrige l’érythropoïèse inefficace.Une modélisation mathématique du complexe Hsp70/α-globine nous a permis de préciser les domaines impliqués dans l’intéraction, ce qui ouvre la voie à une possibilité de criblage de petites molécules permettant la rupture de ce complexe afin de ramener Hsp70 dans le noyau avec un espoir thérapeutique pour améliorer l’érythropoïèse inefficace des β-TM. / Β-TM is an inherited hemoglobinopathy caused by a quantitative defect in the synthesis of the β-globin chains of hemoglobin, leading to the accumulation of free α-globin chains that form toxic aggregates. Despite extensive knowledge on the molecular defects causing β-TM, little is known about the mechanisms responsible for ineffective erythropoiesis (IE), which is characterised by accelerated erythroid differentiation, maturation arrest and apoptosis at the polychromatophilic stage. We have previously demonstrated that normal human erythroid cell maturation requires a transient activation of caspase-3. Although GATA-1, the master transcriptional factor of erythropoiesis, is a caspase-3 target, we have shown that during human erythroid differentiation, it is protected from cleavage through its association with the chaperone Hsp70 in the nucleus. Hsp70 is constitutively highly expressed in normal human erythroid cells. The best-known role of this ubiquitous chaperone is to participate in proteins folding and refolding of proteins denatured by cytoplasmic stress, thus preventing their aggregation.In this study, we have evidenced that during the maturation of human β-TM erythroblasts, Hsp70 is sequestrated in the cytoplasm by the excess of free α-globin chains, resulting in nuclear GATA-1 cleavage and, in turn, end-stage maturation arrest and apoptosis. A molecular modeling shows that α-globin binds to a highly electronegative cavity formed by all Hsp70 domains. Additionally, the transduction of a nuclear-targeted Hsp70 mutant (Hsp70-S400A) or caspase-3 uncleavable GATA-1 mutant (µGATA-1) corrects β-TM ineffective erythropoiesis in human cultured β-TM cells. Our data indicate that cytosolic Hsp70 sequestration by α-globin chains prevents its nuclear localization and is a key mechanism of the β-TM IE. In order to increase nuclear Hsp70 translocation, developing small molecules that could increase Hsp70 expression or disrupt the Hsp70/α-globin complex could be a novel approach of targeted therapies to improve erythropoiesis in β-TM.
2

Molecular Basis of Erythroid Cell Proliferation and Differentiation / Les bases moléculaires de la prolifération et de la différentiation érythroide

Penglong, Tipparat 20 April 2015 (has links)
Pour assurer la production de milliards de globules rouges, l’érythropoièse doit parfaitement contrôler les processus de prolifération et de différenciation. Ces deux processus sont régulés par l’expression de gènes spécifiques dépendant d’une coordination entre l’activité des facteurs de transcription (FT) et les fonctions épigénétiques portées par exemple par les protéines à bromodomaine. Cette étude se concentre sur les conséquences de l’association ou la dissociation du FT clef de l’érythropoièse GATA-1 avec les FT déterminant pour le cycle cellulaire, pRb et E2F. Dans la première partie de ma thèse, j’ai participé à l’étude du rôle de l’association/dissociation de GATA-1 et FOG-2 avec pRb/E2F dans le contrôle la balance prolifération/différenciation cellulaire. Nos résultats montrent que les souris exprimant une mutation de GATA-1 sur la sérine 310 (GATA-1S310A), qui a la capacité accrue à séquestrer E2F-2, présentent une anémie létale lorsqu’un mécanisme de compensation de production de E2F-2 induit par l’IGF-1 est inhibé. Puis, nous avons trouvé que les propriétés décrites pour GATA-1 sont partagées par le FT FOG-2 et montré que l’abrogation de sa fixation avec pRb induit une perturbation de l’adiposité dans des souris FOG-2pRb-. Dans la deuxième partie, l’expression de c-Myc étant régulé différentiellement par GATA-1 et E2F, j’ai testé si la drogue « JQ1 », premier inhibiteur épigenétique chimique de l’expression de c-Myc, pouvait contrôler l’érythropoièse. Pour cela, j’ai utilisé la ligné érythroleucémique UT7 qui prolifère sans se différencier en présence d’érythropoiétine (stade proérythroblaste). Les résultats montrent que le traitement par JQ1 bloque la prolifération des cellules UT7 et permet de réinitier le programme de différentiation érythroide terminale. J’ai alors recherché les mécanismes moléculaires impliqués dans cette régulation et trouvé que l’inhibition transcriptionnelle de c-Myc par JQ1 est associée à l’inhibition de l’activité transcriptionnelle de STAT5 sans modification de son état de phosphorylation. Enfin, j’ai montré que JQ1 pouvait avoir une activité comparable à celle du TGF-b mais sans implication les voies Smad. Des études in vivo montre que JQ1 augmente la viabilité cellulaire et accélère la maturation des cellules érythroides à la fois chez les souris sauvages et thalassémiques. Cette différence d’action de JQ1 sur l’érythropoièse normale et pathologique implique des modifications épigénétiques différentielles entre ces deux types cellulaires et sont à la base de nouvelles stratégies du traitement du cancer. Le rôle clef de la régulation de l’association/dissociation de GATA-1 ou FOG-2 avec pRb/E2F dans l’érythropoièse et l’adipogénèse, nous a conduit, dans une troisième partie, à déterminer in vivo, les conséquences physiologiques de la séquestration de E2F par pRb. Pour cela nous avons crée une souris transgénique exprimant de façon conditionnelle un peptide contenant la partie N terminale de GATA-1 qui se fixe à pRb (GATA-1Nter). In vitro, ce peptide séquestre E2F dans le complexe GATA-1Nter/pRb et inhibe la prolifération cellulaire de façon irréversible. In vivo, aucune souris transgéniques exprimant le peptide GATA-1Nter n’a pu être sélectionnée et une mortalité au stade embryonnaire est observée. Une expression induite de ce peptide au stade adulte ne produit que des souris chimériques avec une fréquence de recombinaison du transgène GATA-1Nter importante. L’établissement de lignées stables de souris exprimant le peptide GATA-1Nter permettra de déterminer les conséquences physiologiques de la séquestration de E2F dans le complexe GATA-1Nter/pRb. / To ensure the generation of billions of erythrocytes daily, erythropoiesis must be well controlled by proliferation and differentiation processes. These two processes are regulated by expressions of specific genes, coordinated by transcription factors (TFs) and epigenetic factors, such as bromodomain proteins. This study focused on the effects of the binding and dissociation of a key erythroid TF, GATA-1, to the crucial cell cycle TFs, pRb and E2F. In the first part of this thesis, the role of GATA-1 and FOG-2 binding to pRb/E2F in a control balances between cell proliferation and differentiation was studied. Mice bearing a GATA-1 mutation (GATA-1S310A) displayed higher levels of E2F2 sequestration and suffered from fatal anemia when the compensatory pathway of E2F2 production via IGF-1 signaling was also inhibited. The properties described for GATA-1 were found to be common to FOG-2, and the abolition of FOG-2 binding to pRb led to obesity resistance in FOG-2pRb- mice. In the second part of this work, as c-Myc is regulated by GATA-1 and E2F, the first chemical epigenetic inhibitor repressing c-Myc expression to be described, JQ1, was investigated to see if it could control erythropoiesis. The UT7 erythroleukemia cell line, which proliferates without differentiating was used. This cell line stops differentiation at the proerythroblast stage, in response to erythropoietin. JQ1 treatment inhibited UT7 proliferation and restored terminal erythroid differentiation. The molecular mechanism underlying this regulation by JQ1 was shown that the inhibition of c-Myc expression was associated with the inhibition of STAT5 transcription, with no change in the phosphorylation of this protein. It was found that JQ1 had a putative TGF--like activity, which did not involve the Smad pathway. It was shown in the ex vivo studies that JQ1 increased the viability of erythroid cells and accelerated the maturation of these cells in both WT and thalassemic mice. The observed differences between leukemic and normal erythropoiesis involved differential epigenetic modifications that could be at the basis of new strategies regarding cancer treatment.The key role of the association of GATA-1 or FOG-2 had with pRb/E2F, and the dissociation of these factors, in erythropoiesis and adipogenesis, respectively, led us to investigate, in vivo, the physiological consequences of E2F sequestration by pRb. As a result, transgenic mice displaying conditional expression of a peptide containing the N-terminal part of GATA-1 that binds to pRb (GATA-1Nter) were developed. In vitro, this peptide traps E2F in a GATA-1Nter/pRb complex, resulting in the irreversible inhibition of cell proliferation. The yield of transgenic mice expressing the GATA-1Nter peptide in vivo was unsuccessful, as this expression lead to lethality at the embryonic stage. Using an alternative approach, based on the inducible expression of the peptide in adults, chimeric mice with a high frequency of recombination of the GATA-1Nter transgene were obtained for this study. The establishment of a stable mouse line expressing the GATA-1Nter peptide should make it possible to determine the pathophysiological consequences of E2F sequestration in the GATA-1Nter/pRb complex.
3

Régulation de l'expression de SCL par la protéine à homéodomaine Otx-1 et le facteur de transcription érythrocytaire GATA-1

Sanguin Gendreau, Virginie January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
4

Hsp70 est un nouveau régulateur majeur de l'érythropoïèse empêchant le clivage du facteur de transcription GATA-1 par la caspase-3 au cours de la différenciation.

Ribeil, Jean-Antoine 25 January 2010 (has links) (PDF)
La production de globules rouges dépend du taux apoptose des précurseurs érythroïdes et est principalement régulé par l'érythropoïétine (Epo). La privation en Epo aboutit à l'activation de la caspase-3 (casp-3) qui clive GATA-1 ce qui entraîne l'apoptose des érythroblastes immatures. L'activation de la casp-3 est également indispensable aux modifications morphologiques caractéristiques observées au cours de la différenciation érythroïde terminale humaine, sans qu'il n'y ait ni d'apoptose ni de clivage de GATA-1. L'objectif de cette thèse était de mettre en évidence si Hsp70 inductible, dont un des rôles principaux est la régulation de l'apoptose, est impliquée dans la protection sélective des substrats de la casp-3 activée au cours de la différenciation érythroïde terminale humaine. Nous avons mis en évidence que lors de la différentiation érythroïde terminale pendant la phase d'activation des caspases, Hsp70 a une expression nucléo-cytoplasmique constitutive et co-localise avec GATA-1 dans le noyau. La localisation nucléaire d'Hsp70 est régulée par l'Epo : après privation des cellules en Epo, il y a une importante diminution de la localisation nucléaire d'Hsp70 et GATA-1 est clivée. L'inhibition de l'expression d'Hsp70 par une approche siRNA a comme conséquence le clivage de GATA-1 lors de l'activation de la casp-3 avec un arrêt de différenciation et une augmentation de la mort cellulaire. Hsp70 est une nouvelle protéine anti-apoptotique de la différenciation érythroïde terminale. Nous proposons un modèle dans lequel l'Epo détermine le destin des érythroblastes (apoptose vs différenciation) en aval de la casp-3 en régulant la localisation nucléaire d'Hsp70.
5

Role transkripčních faktorů PU.1 a GATA-1 v leukemické diferenciaci / The role of transcription factors PU.1 a GATA-1 during leukemia differentiation.

Burda, Pavel January 2011 (has links)
Hematopoiesis is coordinated by a complex regulatory network of transcription factors among them PU.1 (Spi1, Sfpi1) and GATA-1 represent key molecules. GATA-1 and PU.1 bind each other on DNA to block each others transcriptional programs to prevent development of undesired lineage during hematopoietic commitment. Murine erythroleukemia (MEL) cells, transformed erythroid precursors that are blocked from completing the late stages of erythroid differentiation, co-express GATA-1 and PU.1 and as my and others data document, are able to respond to molecular removal (down-regulation) of PU.1 or addition (up-regulation) of GATA-1 by inducing terminal erythroid differentiation. We provide novel evidence that downregulation of GATA-1 or upregulation of PU.1 induces incompletely differentiation into cell cycle arrested monocytic-like cells. Furthermore, PU.1- dependent transcriptome is negatively regulated by GATA-1 in MEL cells, including CCAAT/enhancer binding protein alpha (Cebpa) and Core-binding factor, beta subunit (Cbfb) that encode additional key hematopoietic transcription factors. Chromatin immunoprecipitation and reporter assays identified PU.1 motif sequences near Cebpa and Cbfb that are co-occupied by PU.1 and GATA-1 in the leukemic blasts. Furthermore, transcriptional regulation of these loci by...
6

Role transkripčních faktorů PU.1 a GATA-1 v leukemické diferenciaci / The role of transcription factors PU.1 a GATA-1 during leukemia differentiation.

Burda, Pavel January 2011 (has links)
Hematopoiesis is coordinated by a complex regulatory network of transcription factors among them PU.1 (Spi1, Sfpi1) and GATA-1 represent key molecules. GATA-1 and PU.1 bind each other on DNA to block each others transcriptional programs to prevent development of undesired lineage during hematopoietic commitment. Murine erythroleukemia (MEL) cells, transformed erythroid precursors that are blocked from completing the late stages of erythroid differentiation, co-express GATA-1 and PU.1 and as my and others data document, are able to respond to molecular removal (down-regulation) of PU.1 or addition (up-regulation) of GATA-1 by inducing terminal erythroid differentiation. We provide novel evidence that downregulation of GATA-1 or upregulation of PU.1 induces incompletely differentiation into cell cycle arrested monocytic-like cells. Furthermore, PU.1- dependent transcriptome is negatively regulated by GATA-1 in MEL cells, including CCAAT/enhancer binding protein alpha (Cebpa) and Core-binding factor, beta subunit (Cbfb) that encode additional key hematopoietic transcription factors. Chromatin immunoprecipitation and reporter assays identified PU.1 motif sequences near Cebpa and Cbfb that are co-occupied by PU.1 and GATA-1 in the leukemic blasts. Furthermore, transcriptional regulation of these loci by...
7

Deletion of ΔdblGata Motif Leads to Increased Predisposition and Severity of IgE-mediated Food-induced Anaphylaxis Response

Sharma, Sribava January 2018 (has links)
No description available.
8

Effet de l'acide valproïque sur l'hématopoïèse : rôle du réseau de régulation "microARN/ facteurs de transcription" / Effect of valproic acid on hematopoiesis : role of regulatory network “microRNA / Transcription factor”

Trécul, Anne 29 September 2014 (has links)
L’acide valproïque (VPA) est un inhibiteur des histones désacétylases (HDACi), qui présente des propriétés anti-tumorales nsur différents types de cancers. Son utilisation depuis plusieurs décennies comme médicament antiépileptique a révélé des effets secondaires, notamment sur le système hématopoïétique. Dans la présente étude, nous nous sommes intéressés à l’effet du VPA sur les réseaux microARN (miR)/Facteurs de transcription (FT) spécifiquement impliqués dans la régulation des voies de différenciation érythro-mégacaryocytaires. Nous montrons que le VPA est capable d’inhiber la différenciation érythroïde dans les cellules érythroleucémiques humaines TF1 et K562 et dans les cellules souches hématopoïétiques (CSH) CD34+, stimulées par l’érythropoïétine recombinante (Epo) ou par l’aclacinomycine A. Cette inhibition se traduit par une diminution de l’expression de la glycophorine A, de la γ-globine, des miR-144/451 et du FT GATA-1. L’inhibition du pré-miR-144 suggère que le VPA est capable de réguler l’expression du gène miR-144/451 au niveau transcriptionnel, via GATA-1. Dans les cellules Epo/CD34+, le VPA induit l’augmentation du FT PU.1 en accord avec l’inhibition du miR-155 et favorise son interaction avec GATA-1 pour inhiber son activité. L’utilisation d’un analogue du VPA, sans activité HDACi (Valpromide) et d’un inhibiteur d’HDAC de classe I, le MS-275, a montré que l’activité HDACi du VPA n’est pas requise pour l’inhibition de la différenciation érythroïde. Le VPA affecte également la voie mégacaryocytaire issue d’un progéniteur commun aux cellules érythroïdes. Dans la lignée mégacaryoblastique Meg-01, le VPA induit des modifications morphologiques du type mégacaryocytaire, une augmentation du marqueur CD61, du FT GATA-2 et du miR-27a. En revanche, l’expression du FT GATA-1 et des miR-144/451 diminuent. L’augmentation du miR-27a coïncide avec la diminution de l’expression de l’ARNm du FT RUNX1, en accord avec l’induction de la voie mégacaryocytaire. En conclusion, le VPA est capable de moduler le programme de différenciation érythro-mégacaryocytaire, à travers un micro réseau de régulation miR/FT / Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), exhibits anti-cancer properties against several tumor types. Its use as an anti-epileptic drug for several decades reveled side effects at the hematological level. In this study, we analyzed the effect of VPA on an erythro-megakaryocyte-specific miR/transcription factors network. VPA inhibited erythroid differentiation in the erythroleukemia cell lines TF1 and K562 as well as in CD34+/hematopoietic stem cells (HSCs), induced by the recombinant erythropoietin (Epo) or aclacinomycin. This inhibition was characterized by glycophorin-A, γ-globin and GATA-1/miR-144/451 down-regulation. Inhibition of pre-miR-144 expression suggested that VPA regulates transcription of the miR-144/451 gene through GATA-1. In Epo-stimulated HSCs, VPA induced PU.1 expression in correlation with miR-155 inhibition and promoted GATA-1/PU.1 interaction. The use of valpromide, a VPA analogue without HDACi activity and the class-I HDACi MS-275, showed that HDAC inhibition by VPA was not required for its inhibitory activity on erythropoiesis. VPA also induced megakaryocyte features in Meg-01 cells, at both cellular and molecular levels. Notably, CD61, GATA-2 and miR-27a were over-expressed. RUNX1 mRNA expression and GATA-1/miR-144/451 axis decreased in accordance with megakaryocyte differentiation. In conclusion, VPA is able to modulate erythro-megakaryocytic differentiation program, through a regulatory micro-network involving miRs and TFs
9

Mécanismes de régulation de la balance prolifération/différenciation érythroïde par les facteurs de transcription GATA-1, FOG-1, E2F et la voie de signalisation Akt / Control mechanisms of the balance between proliferation and erythroid differentiation by transcription factors GATA-1, FOG-1, E2F and Akt signaling pathway

Lefevre, Carine 18 March 2013 (has links)
Avec plus de 100 milliards de globules rouges produits chaque jour, le lignage érythroïde présente la plus grande capacité de production cellulaire chez le mammifère adulte. Cette production requiert une balance fine entre la prolifération cellulaire, régulée principalement par la voie de signalisation érythropoïétine (Epo)/PI3K/Akt, et la différenciation érythroïde induite par le couple de facteurs de transcription GATA-1/FOG-1. Des interconnexions entre ces deux grands systèmes ont été décrites dans le laboratoire : 1) le facteur de transcription GATA-1 est phosphorylé par Akt en réponse à l’Epo et cette phosphorylation semble avoir un rôle dans la différenciation érythroïde ; 2) GATA-1 est capable d’interagir avec la protéine du rétinoblastome pRb, impliquée dans la régulation du cycle cellulaire, et le complexe formé est nécessaire à l’érythropoïèse terminale.L'objectif de ma thèse était d’étudier les mécanismes moléculaires impliqués dans la balance prolifération/différenciation cellulaire au cours de l’érythropoïèse, et en particulier de déterminer le rôle moléculaire et physiologique de la phosphorylation de GATA-1 par Akt en réponse à l’Epo. Nos travaux ont montré que cette phosphorylation est une des clefs de la dynamique de l’érythropoïèse. Dans sa forme non phosphorylée, GATA-1 ralentit le cycle cellulaire via le complexe GATA-1/pRb/E2F. Cette étape préliminaire est nécessaire à la mise en place de la différenciation érythroïde terminale. La phosphorylation de GATA-1 induit d’une part la dissociation de GATA-1/pRb/E2F favorisant l’expansion cellulaire, et d’autre part la formation du complexe GATA-1/FOG-1 nécessaire à l’activation des gènes érythroïdes. Ce modèle apporte une explication moléculaire au blocage de la différenciation érythroïde terminale induite par le mutant GATA-1V205G qui n’interagit pas avec FOG-1. Ainsi, la phosphorylation constitutive de GATA-1V205G et l’augmentation de la quantité relative de FOG-1 permettent de restaurer la différenciation érythroïde induite par ce mutant in vitro. Enfin, l’étude d’un modèle murin exprimant une protéine GATA-1 non phosphorylable par Akt montre l’apparition d’une anémie létale lorsque la voie IGF-1 est inhibée. Cela démontre l’importance de la dynamique moléculaire induite par la phosphorylation de GATA-1, et met en évidence le rôle majeur de l’IGF-1 dans l’érythropoïèse in vivo.En conclusion, nous proposons un nouveau modèle moléculaire de la régulation de la balance prolifération/différenciation érythroïde dans lequel la phosphorylation de GATA-1 par Akt coordonne la distribution de GATA-1 dans deux complexes protéiques fonctionnels différents : GATA-1/pRb/E2F versus GATA-1/FOG-1. Nous mettons également en évidence l’IGF-1 comme acteur central de la compensation mise en place in vivo pour pallier à l’absence de phosphorylation de GATA-1. / With more than 100 billion red blood cells generated every day, the erythroid lineage has the largest output of cell production in adult mammals. This production requires a tight balance between cell proliferation, mainly controlled by erythropoietin (Epo)/PI3K/Akt signaling pathway, and erythroid differentiation induced by GATA-1 and FOG-1 transcription factors. Various links between these two processes have been previously demonstrated in the laboratory: 1) Epo-activated Akt directly phosphorylates GATA-1 transcription factors, and this phosphorylation seems to be involved in erythroid differentiation; 2) GATA-1 binds to the cell cycle regulator retinoblastoma protein (pRb), and the resulting complex is essential for terminal erythropoiesis.We investigated the molecular mechanisms involved in the cell proliferation/differentiation balance during terminal erythropoiesis; in particular, we studied the molecular and physiological role of Epo-induced GATA-1 phosphorylation. Our findings suggest that this phosphorylation is one of the key processes in erythropoiesis dynamics. In its unphosphorylated form, GATA-1 can break cell cycle progression via GATA-1/pRb/E2F complex. This preliminary step is necessary for terminal erythroid differentiation. GATA-1 phosphorylation promotes GATA-1/pRb/E2F dissociation, allowing cell cycle progression, and GATA-1/FOG-1 binding, necessary to activate erythroid genes. Our model provides a molecular explanation for the arrest of terminal erythroid differentiation observed in the non-FOG-1-binding mutant GATA-1V205G. We show that the constitutive phosphorylation of GATA-1V205G and the increase of FOG-1 protein amount rescue erythroid differentiation in vitro. Finally, knock-in expression of unphosphorylatable GATA-1 in mice leads to lethal anemia when the IGF-1 signaling pathway is inhibited. This shows the importance of the molecular dynamics of GATA-1 phosphorylation, and highlights the major role of IGF-1 in erythropoiesis, in vivo.In conclusion, we propose a new molecular model for the control of the balance between proliferation and erythroid differentiation. GATA-1 phosphorylation by Akt coordinates the involvement of GATA-1 in two different functional protein complexes: GATA-1/pRb/E2F and GATA-1/FOG-1. We also highlight the major role of IGF-1 in compensating for the lack of GATA-1 phosphorylation in vivo.
10

Etude des métabolismes du fer et de l’hème au cours de l’érythropoïèse normale et pathologique (anémie de Blackfan-Diamond) / Study of iron and haem metabolisms during normal and pathological erythropoiesis (Blackfan-Diamond anemia)

Rio, Sarah 11 October 2016 (has links)
L’anémie de Blackfan-Diamond (ABD) est une maladie hématologique rare qui touche 4 à 7 individus/ million de naissances. Cette maladie se manifeste par une érythroblastopénie congénitale sévère (≤ 5% de précurseurs érythroïdes dans la moelle osseuse). L’anémie est arégénérative et souvent macrocytaire et associée à des malformations osseuses dans 40% des cas. 70% des patients sont porteurs d’une mutation hétérozygote pour un gène de protéine ribosomique impliquée dans la traduction cellulaire. Les gènes les plus fréquemment mutés sont les gènes RPS19 (25%), RPL11 (5%) et RPL5 (7%). La maladie est hétérogène et évolutive. Les liens entre la traduction cellulaire et l’érythropoïèse ne sont pas bien élucidés. Les objectifs de cette thèse ont été d’étudier les métabolismes de l’hème et du fer ainsi que l’expression des globines dans des cellules de patients atteints d'ABD et dans un modèle shARN ciblant l'expression de ces trois gènes afin de comprendre les causes du tropisme érythroïde de la maladie. Ce travail de recherche a permis de mettre en évidence un défaut majeur de synthèse des globines ayant pour conséquence une augmentation de la quantité d’hème libre et une production de formes réactives de l'oxygène toxiques dans les cellules des patients qui pourraient expliquer en partie l’apoptose cellulaire et le déficit de globules rouges. Alors que le métabolisme du fer ne semblait pas altéré dans l'ABD, l’étude de l’expression de différentes protéines importantes pour l’érythropoïèse au cours de la différenciation érythroïde in vitro dans des conditions contrôles et chez des patients a permis de confirmer et de caractériser le retard de différenciation cellulaire en cas de mutation des gènes RPL5 et RPL11. Ce travail montre que le retard de différenciation et le défaut d'hémoglobinisation mis en évidence s'expliquent par un déficit du facteur de transcription GATA-1 qui est primordial au cours de l'érythropoïèse. Ce déficit de GATA-1 dans des cellules déficitaires en RPL11 est dû à une dégradation de sa protéine chaperonne HSP70. La restauration de HSP70, permet d'augmenter l'expression de GATA-1 et d'améliorer la différenciation érythroïde et l'hémoglobinisation cellulaire pour le gène RPL11. Ces résultats permettent de mieux comprendre le tropisme érythroïde de l'ABD et de proposer HSP70 comme une cible thérapeutique prometteuse dans son traitement. / Diamond-Blackfan anemia (DBA) is a rare hematologic disease that affects 4 to 7 individuals / million births. This disease is characterized by a severe congenital erythroblastopenia (less than 5% erythroid precursors in the bone marrow). Anemia is agerenative, often macrocytic and associated with bone malformations in 40% of cases. 70% of patients carry a heterozygous mutation for a ribosomal protein gene involved in cell translation. The most frequently mutated genes are RPS19 (25%), RPL11 (5%) and RPL5 (7%) genes. The disease is heterogeneous and can evolve. The link between cell translation and erythropoiesis is not well understood. The objectives of this thesis were to study haem and iron metabolisms as well as the expression of globins in DBA patients cells and CD34+ cells transduced with shRNA targeting the expression of these three genes in order to understand the causes of the erythroid tropism of the disease. This research has highlighted a major defect of globin synthesis resulting in an increase in the amount of free heme and a production of toxic ROS in patients' cells that could explain in part cell apoptosis and red blood cell deficiency. While iron metabolism did not appear to be altered in DBA, the study of the expression of various important proteins for erythropoiesis in normal CD34+ or DBA cells during erythroid differentiation in vitro confirmed a strong cell differentiation delay for RPL5 and RPL11 mutations. This work shows that the delay of differentiation and the lack of hemoglobinization can be explained by a deficiency of the transcription factor GATA-1, which is essential during erythropoiesis. This deficiency of GATA-1 in shRPL11 cells is due to a degradation of its chaperone protein HSP70. The restoration of HSP70 increases the expression of GATA-1 and improves erythroid differentiation and cellular hemoglobinization for the shRPL11 condition. These results provide a better understanding of the erythroid tropism of ABD and suggest a role for HSP70 as a promising therapeutic target in its treatment.

Page generated in 0.4088 seconds