• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 1
  • Tagged with
  • 20
  • 20
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Établissement d'une lignée cellulaire pro-érythroïde de souris : outil d'étude de la régulation transcriptionnelle des gènes de globine

Hajj Hassan, Houssein January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
12

Molecular regulation of Megakaryopoiesis: the role of Fli-1 and IFI16

Johnson, Lacey Nicole, St George Clinical School, UNSW January 2006 (has links)
Megakaryocytes (Mks) are unique bone marrow cells, which produce platelets. Dysregulated Mk development can lead to abnormal platelet number and the production of functionally defective platelets, causing bleeding, thrombotic events, and leukaemia. Understanding the molecular mechanisms driving megakaryopoiesis may yield insights into the molecular genetics and cellular pathophysiology of a diversity of disorders. The primary aim of this thesis was to gain insight into the molecular events required for normal Mk development. As transcription factors and cytokines play a central role in driving Mk development, both of these processes were investigated. Fli-1 and GATA-1 are key transcription factors regulating Mk-gene expression, alone and co-operatively. To understand the mechanism of transcriptional synergy exerted by Fli-1 and GATA-1, in vitro assays were carried out investigating the interactions between Fli-1, GATA-1 and DNA that mediate synergy. A novel mechanism of synergy was identified, where Fli-1 DNA binding is not required, although an interaction between Fli-1 and GATA-1, and GATA-1 DNA binding is required. Importantly, the results demonstrate that Fli-1 DNA binding is not essential for promoting Mk-gene expression in primary murine bone marrow cells. Thrombopoietin (TPO) is the primary cytokine responsible for Mk and platelet development. Identifying novel TPO gene-targets may provide invaluable information to aid the understanding of the complex and unique processes required for Mk development. Using microarray technology, IFI16 was identified as a TPO-responsive gene that has not previously been studied in the Mk lineage. This work demonstrated that IFI16 is expressed in CD34+ HSC-derived Mks, and that the Jak/STAT pathway is essential for the activation of IFI16 by both TPO and IFN-??. Of biological significance, IFI16 was found to regulate both the proliferation and differentiation of primary Mks, suggesting that IFI16 may control the balance between these two essential processes. In conclusion, the data in this thesis presents a novel mechanism through which Fli-1 and GATA-1 regulate the synergistic activation of Mk genes. The identification and functional characterisation of a novel TPO-inducible gene, IFI16, involved in regulating the proliferation and differentiation of Mks is also described. These findings have implications for several congenital and malignant conditions affecting Mk and platelet development, and possibly a mechanism for IFN-induced thrombocytopaenia.
13

Mécanismes de régulation de GATA-1 par les protéines de choc thermique Hsp27 et Hsp70 au cours de la différenciation érythroïde terminale.

Vandekerckhove, Julie 12 November 2009 (has links) (PDF)
L'érythropoïèse est le processus permettant la production de globules rouges matures à partir de cellules souches hématopoïétiques. Ce programme de différenciation est en grande partie sous le contrôle du facteur de transcription GATA-1 qui active la transcription des gènes érythroïdes et de la protéine anti-apoptotique Bcl-xL. Au cours de l'apoptose, la caspase-3 clive GATA-1 induisant la diminution d'expression de Bcl-xL. Il a été montré que l'activation transitoire de la caspase-3 est indispensable pour la différenciation érythroïde terminale, mais GATA-1 n'est pas clivé. Dans ce travail, nous montrons qu'à la différence du proccessus apoptotique induit par la privation en Epo, au cours de la différenciation érythroïde, GATA-1 est protégé du clivage de la caspase-3 par la protéine chaperonne Hsp70. Au moment de l'activation de la capase-3, Hsp70 s'accumule dans le noyau des érythroblastes et protège GATA-1, permettant ainsi l'expression de Bcl-xL. Par contre, lors de la privation en Epo, Hsp70 est exportée du noyau et GATA-1 est clivé par la caspase-3 ce qui induit l'apoptose. D'autre part, la surexpression de GATA-1 induit un blocage de la maturation donc, l'expression de GATA-1 doit être finement régulée pour permettre une différenciation érythroïde normale. Nous avons montré qu'Hsp27 s'accumule dans le noyau des érythroblastes en cours de différenciation sous l'action de la phosphorylation de la MAPK p38. Hsp27 nucléaire interagit avec la forme acétylée de GATA-1 et induit son ubiquitinylation et sa dégradation par le protéasome. Ces résultats montrent un nouveau rôle d'Hsp70 et Hsp27 au cours de la différenciation érythroïde terminale en intervenant dans des mécanismes de régulation fine de l'expression de GATA-1. Nous avons déterminé les mécanismes par lesquels Hsp70 est accumulé dans le noyau des érythroblastes au cours de la différenciation érythroïde terminale. L'érythropoïèse est régulée positivement par deux facteurs indispensables à la prolifération et la survie des progéniteurs éythroïdes, le SCF pour les phases précoces jusqu'au stade d'érythroblaste basophile et l'Epo à partir des CFU-E jusqu'au stade d'érythroblastes. Avant la diminution d'expression de c-Kit, le récepteur au SCF, au stade d'érythroblastes basophiles, Hsp70 est principalement cytoplasmique. En effet, le SCF induit l'export nucléaire d'Hsp70 par la phosphorylation induite par AKT sur la sérine 400 résultant en une faible quantité d'Hsp70 nucléaire. Au stade de la diminution d'expression de c-Kit, l'export nucléaire induit par le SCF est diminué. D'autre part, l'Epo, en activant Lyn, induit la rétention nucléaire d'Hsp70. Nous décrivons donc un nouveau mécanisme du retard de la différenciation érythroïde par c-Kit puisque sa diminution est nécessaire pour que GATA-1 soit protégé du clivage de la caspase-3 par Hsp70 nucléaire. De plus, nous suggérons un nouveau mécanisme de Lyn dans la survie et la différenciation des érythroblastes sous Epo. Nous avons testé notre modèle au cours de syndromes myélodysplasiques (SMD) de bas grade, caractérisés par une anémie associée à un excès d'activation des caspases et de l'apoptose ainsi qu'un retard de différenciation des progéniteurs érythroïdes. Nous avons démontré qu'un défaut de localisation nucléaire d'Hsp70 est en partie responsable du phénotype observé puisque l'expression d'Hsp70 nucléaire restaure en partie le phénotype des progéniteurs érythroïdes de patients atteints de SMD. Ces résultats concordent avec notre modèle physiologique. De plus, il est envisageable que c-Kit pourrait être une nouvelle cible thérapeutique pour les patients atteints de SMD.
14

Molecular regulation of Megakaryopoiesis: the role of Fli-1 and IFI16

Johnson, Lacey Nicole, St George Clinical School, UNSW January 2006 (has links)
Megakaryocytes (Mks) are unique bone marrow cells, which produce platelets. Dysregulated Mk development can lead to abnormal platelet number and the production of functionally defective platelets, causing bleeding, thrombotic events, and leukaemia. Understanding the molecular mechanisms driving megakaryopoiesis may yield insights into the molecular genetics and cellular pathophysiology of a diversity of disorders. The primary aim of this thesis was to gain insight into the molecular events required for normal Mk development. As transcription factors and cytokines play a central role in driving Mk development, both of these processes were investigated. Fli-1 and GATA-1 are key transcription factors regulating Mk-gene expression, alone and co-operatively. To understand the mechanism of transcriptional synergy exerted by Fli-1 and GATA-1, in vitro assays were carried out investigating the interactions between Fli-1, GATA-1 and DNA that mediate synergy. A novel mechanism of synergy was identified, where Fli-1 DNA binding is not required, although an interaction between Fli-1 and GATA-1, and GATA-1 DNA binding is required. Importantly, the results demonstrate that Fli-1 DNA binding is not essential for promoting Mk-gene expression in primary murine bone marrow cells. Thrombopoietin (TPO) is the primary cytokine responsible for Mk and platelet development. Identifying novel TPO gene-targets may provide invaluable information to aid the understanding of the complex and unique processes required for Mk development. Using microarray technology, IFI16 was identified as a TPO-responsive gene that has not previously been studied in the Mk lineage. This work demonstrated that IFI16 is expressed in CD34+ HSC-derived Mks, and that the Jak/STAT pathway is essential for the activation of IFI16 by both TPO and IFN-??. Of biological significance, IFI16 was found to regulate both the proliferation and differentiation of primary Mks, suggesting that IFI16 may control the balance between these two essential processes. In conclusion, the data in this thesis presents a novel mechanism through which Fli-1 and GATA-1 regulate the synergistic activation of Mk genes. The identification and functional characterisation of a novel TPO-inducible gene, IFI16, involved in regulating the proliferation and differentiation of Mks is also described. These findings have implications for several congenital and malignant conditions affecting Mk and platelet development, and possibly a mechanism for IFN-induced thrombocytopaenia.
15

Rôle de la chaperonne HSP 70 dans l'éythropoïèse inefficace des béta-thalassémies majeures.

Arlet, Jean-Benoît 01 July 2013 (has links) (PDF)
L'érythropoïèse inefficace joue un rôle central dans la physiopathologie de l'anémie des β-TM. Ses caractéristiques sont triple: accélération de la différenciation érythroïde, arrêt de maturation au stade d'érythroblaste polychromatophile et mort par apoptose à ce stade de différenciation. Les mécanismes précis de cette apoptose et de l'arrêt de la maturation n'ont pas encore été élucidés. Il a été montré, au cours de l'érythropoïèse physiologique, que la protéine chaperonne Hsp70, en se localisant dans le noyau des érythroblastes en cours de différenciation, protège GATA-1 (facteur de transcription érythroïde majeur) de sa destruction par la caspase-3. Cette enzyme clé de l'apoptose est en effet activée physiologiquement au cours de la différenciation érythroïde et peut cliver GATA-1. Notre travail se base sur l'hypothèse suivante : Hsp70 pourrait, au cours de l'érythropoïèse des β-TM, être séquestrée dans le cytoplasme des érythroblastes matures (stade d'une intense hémoglobinisation) afin d'exercer son rôle de chaperonne des chaînes d'-globine libres. Cela aurait comme conséquence néfaste l'absence de localisation nucléaire d'Hsp70 et, en conséquence, la destruction de GATA-1 à l'origine de l'arrêt de maturation et de la mort cellulaire. Nous avons montré dans ce travail qu'Hsp70 était localisée principalement dans le cytoplasme des érythroblastes matures dans la moelle de patients β-TM, avec un défaut d'expression nucléaire. Par ailleurs, GATA-1 n'est plus exprimé dans ces cellules. Nous avons confirmé ces résultats dans un système de culture cellulaire érythroïde humaine en milieu liquide reproduisant les étapes de la différenciation érythroïde terminale. Une intéraction physique directe entre Hsp70 et l'-globine a été identifiée par techniques de microscopie confocale, d'immunoprécipitation et de double hybride. Enfin, la transduction dans les érythroblastes de β-TM d'un mutant d'Hsp70-S400A, principalement nucléaire, ou d'un mutant de GATA-1 non clivable par la caspase-3 corrige l'érythropoïèse inefficace.Une modélisation mathématique du complexe Hsp70/-globine nous a permis de préciser les domaines impliqués dans l'intéraction, ce qui ouvre la voie à une possibilité de criblage de petites molécules permettant la rupture de ce complexe afin de ramener Hsp70 dans le noyau avec un espoir thérapeutique pour améliorer l'érythropoïèse inefficace des β-TM.
16

Étude de la collaboration entre les facteurs de transcription hématopoïétiques lors du développement et de la différenciation des cellules érythroïdes

Ross, Julie 11 1900 (has links)
La régulation transcriptionnelle des gènes est cruciale pour permettre le bon fonctionnement des cellules. Afin que les cellules puissent accomplir leurs fonctions, les gènes doivent être exprimés adéquatement dans le bon type cellulaire et au stade de développement et de différenciation approprié. Un dérèglement dans l’expression de un ou plusieurs gènes peut entraîner de graves conséquences sur le destin de la cellule. Divers éléments en cis (ex : promoteurs et enhancers) et en trans (machinerie transcriptionnelle et facteurs de transcription) sont impliqués dans la régulation de la transcription. Les gènes du locus humain beta-globine (hub) sont exprimés dans les cellules érythroïdes et sont finenement régulés lors du développement et de la différenciation. Des mutations dans différentes régions du locus causent entre autres les beta-thalassémies. Nous avons utilisé ce modèle bien caractérisé afin d’étudier différents mécanismes de régulation favorisés par les facteurs de transcription qui sont exprimés dans les cellules érythroïdes. Nous nous sommes intéressés à l’importance de l’élément en cis HS2 du Locus control region. Cet élément possède plusieurs sites de liaison pour des facteurs de transcription impliqués dans la régulation des gènes du locus hub. Nos résultats montrent que HS2 possède un rôle dans l’organisation de la chromatine du locus qui peut être dissocié de son rôle d’enhancer. De plus, HS2 n’est pas essentiel pour l’expression à haut niveau du gène beta alors qu’il est important pour l’expression des gènes gamma. Ceci suggère que le recrutement des différents facteurs au site HS2 lors du développement influence différement les gènes du locus. Dans un deuxième temps, nous avons investigué l’importance de HS2 lors de la différenciation des cellules érythroïdes. Il avait été rapporté que l’absence de HS2 influence grandement la potentialisation de la chromatine du gène beta. La potentialisation dans les cellules progénitrices favorise l’activation transcriptionnelle du gène dans les cellules matures. Nous avons caractérisé le recrutement de différents facteurs de transcription au site HS2 et au promoteur beta dans les cellules progénitrices hématopoïétiques (CPH) ainsi que dans les cellules érythroïdes matures. Nos résultats montrent que le facteur EKLF est impliqué dans la potentialisation de la chromatine et favorise le recrutement des facteurs BRG1, p45 et CBP dans les CPH. L’expression de GATA-1 dans les cellules érythroïdes matures permet le recrutement de GATA-1 au locus hub dans ces cellules. Ces données suggèrent que la combinaison de EKLF et GATA-1 est requise pour permettre une activation maximale du gène beta dans les cellules érythroïdes matures. Un autre facteur impliqué dans la régulation du locus hub est Ikaros. Nous avons étudié son recrutement au locus hub et avons observé que Ikaros est impliqué dans la répression des gènes gamma. Nos résultats montrent aussi que GATA-1 est impliqué dans la répression de ces gènes et qu’il interagit avec Ikaros. Ensemble, Ikaros et GATA-1 favorisent la formation d’un complexe de répression aux promoteurs gamma. Cette étude nous a aussi permis d’observer que Ikaros et GATA-1 sont impliqués dans la répression du gène Gata2. De façon intéressante, nous avons caractérisé le mécanisme de répression du gène Hes1 (un gène cible de la voie Notch) lors de la différenciation érythroïde. Similairement à ce qui a été observé pour les gènes gamma, Hes1 est aussi réprimé par Ikaros et GATA-1. Ces résultats suggèrent donc que la combinaison de Ikaros et GATA-1 est associée à la répression de plusieurs de gènes dans les cellules érythroïdes. Globalement cette thèse rapporte de nouveaux mécanismes d’action de différents facteurs de transcription dans les cellules érythroïdes. Particulièrement, nos travaux ont permis de proposer un modèle pour la régulation des gènes du locus hub lors du développement et de la différenciation. De plus, nous rapportons pour la première fois l’importance de la collaboration entre les facteurs Ikaros et GATA-1 dans la régulation transcriptionnelle de gènes dans les cellules érythroïdes. Des mutations associées à certains des facteurs étudiés ont été rapportées dans des cas de beta-thalassémies ainsi que de leucémies. Nos travaux serviront donc à avoir une meilleure compréhension des mécanismes d’action de ces facteurs afin de potentiellement pouvoir les utiliser comme cibles thérapeutiques. / Gene transcriptional regulation is crucial for appropriate cell functioning. Genes must be properly expressed in the right cell type as well as at the right developmental and differenciation stage in order to allow the cells to accomplish their functions. Abnormal expression of one or many genes can dramatically influence cell fate. Diverse cis (ex : promoters and enhancers) and trans (transcriptional machinery and transcription factors) elements are involved in transcriptional regulation. Genes of the human beta-globin (hub) locus are expressed in erythroid cells and are thightly regulated during development and differentiation. Mutations in several regions of the locus are involved in beta-thalassemia. We used this well characterized model in order to study different regulation mechanisms that are mediated by transcription factors expressed in erythroid cells. We were interested in the important role of the cis element HS2 from the Locus control region. This region contains several binding sites for transcription factors that are involved in hub locus gene regulation. Our results show that HS2 has a role in chromatin organization of the locus which is distinct from its enhancer function. Moreover, HS2 is not essential for high level beta gene expression while it is important for gamma gene expression. This suggest that the influence of transcription factors recruited to HS2 varies during development. Secondly, we investigated HS2 importance during erythroid differentiation. It was reported the HS2 deletion strongly influences chromatin potentiation of beta gene. Potentiation in progenitor cells favors gene transcriptional activation in mature cells. We characterized transcription factor recruitment to HS2 and b promoter in hematopoietic progenitor cells (HPC). Our results show that EKLF is involved in chromatin potentiation and favors the recruitment of BRG1, p45 and CBP in HPC. GATA-1 expression in mature erythroid cells allows GATA-1 recruitment to hub locus in these cells. These data suggest that EKLF and GATA-1 combination is required to allow maximal beta gene activation in mature erythroid cells. Another factor involved in hub locus regulation is Ikaros. We studied its recruitment to hub locus and found that Ikaros is involved in gamma gene repression. Our data also shows that GATA-1 is involved in the repression of these genes and that it interacts with Ikaros. Together, Ikaros and GATA-1 favors the formation of a repressive complex to gamma promoters. In this study, we also observed that Ikaros and GATA-1 are involved in Gata2 gene repression. Interestingly, we have also characterized the repression mechanism of Hes1 gene (a Notch target gene) during erythroid differentiation. Similar to what is observed for gamma genes, Hes1 is also repressed by Ikaros and GATA-1. Collectivelly, our data suggest that Ikaros and GATA-1 combination is associated with the repression of several genes in erythroid cells. Globally, this thesis reports new mechanisms of action for different transcription factors in erythroid cells. Particularly, our work allows us to propose a model for hub locus gene regulation during development and differentiation. Moreover, we show for the first time that the combination of Ikaros and GATA-1 is relevant for gene regulation in erythroid cells. Several mutations in the transcription factors that we studied were associated with beta-thalassemia or leukemia. Our work will thus help to better understand mechanisms of action of these transcription factors in order to potentially use them as therapeutical targets.
17

Étude de la collaboration entre les facteurs de transcription hématopoïétiques lors du développement et de la différenciation des cellules érythroïdes

Ross, Julie 11 1900 (has links)
La régulation transcriptionnelle des gènes est cruciale pour permettre le bon fonctionnement des cellules. Afin que les cellules puissent accomplir leurs fonctions, les gènes doivent être exprimés adéquatement dans le bon type cellulaire et au stade de développement et de différenciation approprié. Un dérèglement dans l’expression de un ou plusieurs gènes peut entraîner de graves conséquences sur le destin de la cellule. Divers éléments en cis (ex : promoteurs et enhancers) et en trans (machinerie transcriptionnelle et facteurs de transcription) sont impliqués dans la régulation de la transcription. Les gènes du locus humain beta-globine (hub) sont exprimés dans les cellules érythroïdes et sont finenement régulés lors du développement et de la différenciation. Des mutations dans différentes régions du locus causent entre autres les beta-thalassémies. Nous avons utilisé ce modèle bien caractérisé afin d’étudier différents mécanismes de régulation favorisés par les facteurs de transcription qui sont exprimés dans les cellules érythroïdes. Nous nous sommes intéressés à l’importance de l’élément en cis HS2 du Locus control region. Cet élément possède plusieurs sites de liaison pour des facteurs de transcription impliqués dans la régulation des gènes du locus hub. Nos résultats montrent que HS2 possède un rôle dans l’organisation de la chromatine du locus qui peut être dissocié de son rôle d’enhancer. De plus, HS2 n’est pas essentiel pour l’expression à haut niveau du gène beta alors qu’il est important pour l’expression des gènes gamma. Ceci suggère que le recrutement des différents facteurs au site HS2 lors du développement influence différement les gènes du locus. Dans un deuxième temps, nous avons investigué l’importance de HS2 lors de la différenciation des cellules érythroïdes. Il avait été rapporté que l’absence de HS2 influence grandement la potentialisation de la chromatine du gène beta. La potentialisation dans les cellules progénitrices favorise l’activation transcriptionnelle du gène dans les cellules matures. Nous avons caractérisé le recrutement de différents facteurs de transcription au site HS2 et au promoteur beta dans les cellules progénitrices hématopoïétiques (CPH) ainsi que dans les cellules érythroïdes matures. Nos résultats montrent que le facteur EKLF est impliqué dans la potentialisation de la chromatine et favorise le recrutement des facteurs BRG1, p45 et CBP dans les CPH. L’expression de GATA-1 dans les cellules érythroïdes matures permet le recrutement de GATA-1 au locus hub dans ces cellules. Ces données suggèrent que la combinaison de EKLF et GATA-1 est requise pour permettre une activation maximale du gène beta dans les cellules érythroïdes matures. Un autre facteur impliqué dans la régulation du locus hub est Ikaros. Nous avons étudié son recrutement au locus hub et avons observé que Ikaros est impliqué dans la répression des gènes gamma. Nos résultats montrent aussi que GATA-1 est impliqué dans la répression de ces gènes et qu’il interagit avec Ikaros. Ensemble, Ikaros et GATA-1 favorisent la formation d’un complexe de répression aux promoteurs gamma. Cette étude nous a aussi permis d’observer que Ikaros et GATA-1 sont impliqués dans la répression du gène Gata2. De façon intéressante, nous avons caractérisé le mécanisme de répression du gène Hes1 (un gène cible de la voie Notch) lors de la différenciation érythroïde. Similairement à ce qui a été observé pour les gènes gamma, Hes1 est aussi réprimé par Ikaros et GATA-1. Ces résultats suggèrent donc que la combinaison de Ikaros et GATA-1 est associée à la répression de plusieurs de gènes dans les cellules érythroïdes. Globalement cette thèse rapporte de nouveaux mécanismes d’action de différents facteurs de transcription dans les cellules érythroïdes. Particulièrement, nos travaux ont permis de proposer un modèle pour la régulation des gènes du locus hub lors du développement et de la différenciation. De plus, nous rapportons pour la première fois l’importance de la collaboration entre les facteurs Ikaros et GATA-1 dans la régulation transcriptionnelle de gènes dans les cellules érythroïdes. Des mutations associées à certains des facteurs étudiés ont été rapportées dans des cas de beta-thalassémies ainsi que de leucémies. Nos travaux serviront donc à avoir une meilleure compréhension des mécanismes d’action de ces facteurs afin de potentiellement pouvoir les utiliser comme cibles thérapeutiques. / Gene transcriptional regulation is crucial for appropriate cell functioning. Genes must be properly expressed in the right cell type as well as at the right developmental and differenciation stage in order to allow the cells to accomplish their functions. Abnormal expression of one or many genes can dramatically influence cell fate. Diverse cis (ex : promoters and enhancers) and trans (transcriptional machinery and transcription factors) elements are involved in transcriptional regulation. Genes of the human beta-globin (hub) locus are expressed in erythroid cells and are thightly regulated during development and differentiation. Mutations in several regions of the locus are involved in beta-thalassemia. We used this well characterized model in order to study different regulation mechanisms that are mediated by transcription factors expressed in erythroid cells. We were interested in the important role of the cis element HS2 from the Locus control region. This region contains several binding sites for transcription factors that are involved in hub locus gene regulation. Our results show that HS2 has a role in chromatin organization of the locus which is distinct from its enhancer function. Moreover, HS2 is not essential for high level beta gene expression while it is important for gamma gene expression. This suggest that the influence of transcription factors recruited to HS2 varies during development. Secondly, we investigated HS2 importance during erythroid differentiation. It was reported the HS2 deletion strongly influences chromatin potentiation of beta gene. Potentiation in progenitor cells favors gene transcriptional activation in mature cells. We characterized transcription factor recruitment to HS2 and b promoter in hematopoietic progenitor cells (HPC). Our results show that EKLF is involved in chromatin potentiation and favors the recruitment of BRG1, p45 and CBP in HPC. GATA-1 expression in mature erythroid cells allows GATA-1 recruitment to hub locus in these cells. These data suggest that EKLF and GATA-1 combination is required to allow maximal beta gene activation in mature erythroid cells. Another factor involved in hub locus regulation is Ikaros. We studied its recruitment to hub locus and found that Ikaros is involved in gamma gene repression. Our data also shows that GATA-1 is involved in the repression of these genes and that it interacts with Ikaros. Together, Ikaros and GATA-1 favors the formation of a repressive complex to gamma promoters. In this study, we also observed that Ikaros and GATA-1 are involved in Gata2 gene repression. Interestingly, we have also characterized the repression mechanism of Hes1 gene (a Notch target gene) during erythroid differentiation. Similar to what is observed for gamma genes, Hes1 is also repressed by Ikaros and GATA-1. Collectivelly, our data suggest that Ikaros and GATA-1 combination is associated with the repression of several genes in erythroid cells. Globally, this thesis reports new mechanisms of action for different transcription factors in erythroid cells. Particularly, our work allows us to propose a model for hub locus gene regulation during development and differentiation. Moreover, we show for the first time that the combination of Ikaros and GATA-1 is relevant for gene regulation in erythroid cells. Several mutations in the transcription factors that we studied were associated with beta-thalassemia or leukemia. Our work will thus help to better understand mechanisms of action of these transcription factors in order to potentially use them as therapeutical targets.
18

Caractérisation du rôle de SCL dans la mégacaryopoïèse et la thrombopoïèse chez les souris transgéniques

Sedzro, Josepha-Clara 12 1900 (has links)
No description available.
19

Études structurales d’interactions protéine/protéine impliquées dans l’érythropoïèse

Mas, Caroline 08 1900 (has links)
Le développement hématopoïétique est régulé par l’action combinée de facteurs de transcription lignée spécifiques et de la machinerie transcriptionnelle de base, permettant ainsi l’expression de gènes en temps et lieu appropriés. Les travaux présentés dans cette thèse portent sur l’étude structurale et fonctionnelle d’interactions décisives pour la régulation de l’expression de gènes et impliquant des domaines de transactivation (TAD). En effet, les interactions faisant intervenir les TAD d’activateurs permettent de réguler l’activation de la transcription de façon spécifique. La première étude présentée dans cette thèse relate l'identification et la caractérisation d'une nouvelle interaction entre deux facteurs de transcription : le facteur hématopoïétique GATA-1 et la protéine suppresseur de tumeur p53. En combinant des études in vitro par titrage calorimétrique en condition isotherme (ITC) et par spectroscopie RMN et des études in vivo, nous avons identifié et caractérisé cette nouvelle interaction. Il s'avère que le TAD de p53 et le domaine de liaison à l’ADN de GATA-1 sont les domaines minimaux requis pour la formation de ce complexe. L'inhibition de la voie p53 par GATA-1 s’est avérée être la conséquence majeure de cette interaction, permettant ainsi le maintien en vie des précurseurs érythrocytaires via l’inhibition de l’apoptose. Un deuxième type d’interaction a fait l’objet d’études : l’interaction entre divers TAD et la machinerie transcriptionnelle de base, plus spécifiquement avec le Facteur général de Transcription IIH (TFIIH). La structure des complexes constitués par la sous-unité Tfb1/p62 du facteur TFIIH en interaction avec le TAD viral de VP16 d’une part, et avec le TAD humain du facteur érythrocytaire « Erythroid Krüppel-like factor» (EKLF) d’autre part, ont été résolues par spectroscopie RMN. La structure du complexe Tfb1/VP16 a révélée que le mode de liaison de VP16 à Tfb1 est similaire au mode de liaison du TAD de p53 avec le même partenaire. En effet, les TAD de VP16 et de p53 forment tous deux une hélice α de 9 résidus en interaction avec Tfb1. En dépit de partager avec p53 et VP16 le même site de liaison sur Tfb1/p62, la structure RMN du complexe EKLF/Tfb1 démontre que le mode d’interaction de ce TAD se distingue du mode de liaison canonique des activeurs transcriptionnels. Etonnamment, EKLF adopte un mécanisme de liaison semblable au mécanisme de liaison du facteur général de transcription TFIIEα avec p62, leurs conformations demeurent étendues en interaction avec Tfb1/p62. En se basant sur nos données structurales, nous avons identifié un résidu dans le TAD d'EKLF décisif pour la formation du complexe EKLF/p62 : le Trp73. La mutation de cet acide aminé perturbe son interaction avec Tfb1PH/p62PH et réduit significativement l'activité transcriptionnelle d'EKLF dans les érythrocytes. / Hematopoietic development is regulated through a combinatorial interplay between lineage-specific activators and the general transcription machinery that enables cell-specific patterns of gene expression. This thesis reports structural and functional studies of interactions involving the transcativation domains (TAD) of activators proteins and their role in hematopoietic development. Interactions between the TAD of activators and their partners play an important role in the transcriptional regulation of all genes including those regulating hematopoiesis. The first section reports the identification and characterization of a novel interaction between the erythroid transcription factor GATA-1 and the tumor suppressor protein p53. Using a combination of isothermal titration calorimetry (ITC), NMR spectroscopy and in vivo studies, we identified and characterized the direct interaction between these two important transcription factors in an attempt to determine the role of this interaction in erythroid development. Based on our results, the TAD of p53 directly interacts with the DNA-binding domain of GATA-1 in a cell-type specific manner. Through this interaction, GATA-1 inhibits activation of select p53-regulated genes and we postulate that the inhibition of p53-dependent apoptotic pathways is essential for survival of erythroid precursor cells. In the second section, we report on the interactions between two acidic TADs and the general transcription factor IIH (TFIIH). The structure of the complexes formed by the Tfb1/p62 subunit of TFIIH (Tfb1PH/p62PH) and the acidic TAD of Herpes Simplex viral protein 16 (VP16) and the Erythroid Krüppel-like factor (EKLF) were determined by NMR spectroscopy. The structure of the Tfb1PH/VP16 complex demonstrated that a viral TAD has the ability to mimic the actions of the TAD from the human p53 with Tfb1PH/p62PH. The TADs of both VP16 and p53 adopt a 9-residue α-helix in complex with Tfb1PH/p62PH. Interestingly, the NMR structure of the EKLF/Tfb1PH complex demonstrated that despite sharing a common binding site with p53 and VP16 on Tfb1PH, the EKLF/Tfb1PH binding interface is distinctly different from the binding interfaces we previously observed with p53/Tfb1PH and VP16/Tfb1PH complexes. Surprisingly, EKLF adopted a similar binding mechanism as the general transcription factor TFIIEα in interaction with p62PH as both interact in an extended conformation. Moreover, based on our structural data, we have identified Trp73 as a key residue within the TAD of EKLF that is required for the formation of the EKLF/Tfb1PH complex. Mutations of Trp73 disrupted the binding to Tfb1PH/p62PH and significantly reduced the transcriptional activity of EKLF in red blood cells.
20

Études structurales d’interactions protéine/protéine impliquées dans l’érythropoïèse

Mas, Caroline 08 1900 (has links)
Le développement hématopoïétique est régulé par l’action combinée de facteurs de transcription lignée spécifiques et de la machinerie transcriptionnelle de base, permettant ainsi l’expression de gènes en temps et lieu appropriés. Les travaux présentés dans cette thèse portent sur l’étude structurale et fonctionnelle d’interactions décisives pour la régulation de l’expression de gènes et impliquant des domaines de transactivation (TAD). En effet, les interactions faisant intervenir les TAD d’activateurs permettent de réguler l’activation de la transcription de façon spécifique. La première étude présentée dans cette thèse relate l'identification et la caractérisation d'une nouvelle interaction entre deux facteurs de transcription : le facteur hématopoïétique GATA-1 et la protéine suppresseur de tumeur p53. En combinant des études in vitro par titrage calorimétrique en condition isotherme (ITC) et par spectroscopie RMN et des études in vivo, nous avons identifié et caractérisé cette nouvelle interaction. Il s'avère que le TAD de p53 et le domaine de liaison à l’ADN de GATA-1 sont les domaines minimaux requis pour la formation de ce complexe. L'inhibition de la voie p53 par GATA-1 s’est avérée être la conséquence majeure de cette interaction, permettant ainsi le maintien en vie des précurseurs érythrocytaires via l’inhibition de l’apoptose. Un deuxième type d’interaction a fait l’objet d’études : l’interaction entre divers TAD et la machinerie transcriptionnelle de base, plus spécifiquement avec le Facteur général de Transcription IIH (TFIIH). La structure des complexes constitués par la sous-unité Tfb1/p62 du facteur TFIIH en interaction avec le TAD viral de VP16 d’une part, et avec le TAD humain du facteur érythrocytaire « Erythroid Krüppel-like factor» (EKLF) d’autre part, ont été résolues par spectroscopie RMN. La structure du complexe Tfb1/VP16 a révélée que le mode de liaison de VP16 à Tfb1 est similaire au mode de liaison du TAD de p53 avec le même partenaire. En effet, les TAD de VP16 et de p53 forment tous deux une hélice α de 9 résidus en interaction avec Tfb1. En dépit de partager avec p53 et VP16 le même site de liaison sur Tfb1/p62, la structure RMN du complexe EKLF/Tfb1 démontre que le mode d’interaction de ce TAD se distingue du mode de liaison canonique des activeurs transcriptionnels. Etonnamment, EKLF adopte un mécanisme de liaison semblable au mécanisme de liaison du facteur général de transcription TFIIEα avec p62, leurs conformations demeurent étendues en interaction avec Tfb1/p62. En se basant sur nos données structurales, nous avons identifié un résidu dans le TAD d'EKLF décisif pour la formation du complexe EKLF/p62 : le Trp73. La mutation de cet acide aminé perturbe son interaction avec Tfb1PH/p62PH et réduit significativement l'activité transcriptionnelle d'EKLF dans les érythrocytes. / Hematopoietic development is regulated through a combinatorial interplay between lineage-specific activators and the general transcription machinery that enables cell-specific patterns of gene expression. This thesis reports structural and functional studies of interactions involving the transcativation domains (TAD) of activators proteins and their role in hematopoietic development. Interactions between the TAD of activators and their partners play an important role in the transcriptional regulation of all genes including those regulating hematopoiesis. The first section reports the identification and characterization of a novel interaction between the erythroid transcription factor GATA-1 and the tumor suppressor protein p53. Using a combination of isothermal titration calorimetry (ITC), NMR spectroscopy and in vivo studies, we identified and characterized the direct interaction between these two important transcription factors in an attempt to determine the role of this interaction in erythroid development. Based on our results, the TAD of p53 directly interacts with the DNA-binding domain of GATA-1 in a cell-type specific manner. Through this interaction, GATA-1 inhibits activation of select p53-regulated genes and we postulate that the inhibition of p53-dependent apoptotic pathways is essential for survival of erythroid precursor cells. In the second section, we report on the interactions between two acidic TADs and the general transcription factor IIH (TFIIH). The structure of the complexes formed by the Tfb1/p62 subunit of TFIIH (Tfb1PH/p62PH) and the acidic TAD of Herpes Simplex viral protein 16 (VP16) and the Erythroid Krüppel-like factor (EKLF) were determined by NMR spectroscopy. The structure of the Tfb1PH/VP16 complex demonstrated that a viral TAD has the ability to mimic the actions of the TAD from the human p53 with Tfb1PH/p62PH. The TADs of both VP16 and p53 adopt a 9-residue α-helix in complex with Tfb1PH/p62PH. Interestingly, the NMR structure of the EKLF/Tfb1PH complex demonstrated that despite sharing a common binding site with p53 and VP16 on Tfb1PH, the EKLF/Tfb1PH binding interface is distinctly different from the binding interfaces we previously observed with p53/Tfb1PH and VP16/Tfb1PH complexes. Surprisingly, EKLF adopted a similar binding mechanism as the general transcription factor TFIIEα in interaction with p62PH as both interact in an extended conformation. Moreover, based on our structural data, we have identified Trp73 as a key residue within the TAD of EKLF that is required for the formation of the EKLF/Tfb1PH complex. Mutations of Trp73 disrupted the binding to Tfb1PH/p62PH and significantly reduced the transcriptional activity of EKLF in red blood cells.

Page generated in 0.0337 seconds