Return to search

Sentimentanalys av svenskt aktieforum för att förutspå aktierörelse / Sentiment analysis of Swedish stock trading forum for predicting stock market movement

Förevarande studie undersöker möjligheten att förutsäga aktierörelse på en dagligbasis med sentimentanalys av inlägg från ett svenskt aktieforum. Sentimentanalys används för att finna subjektivitet i form av känslor (sentiment) ur text. Textdata extraherades från ett svenskt aktieforum för att förutsäga aktierörelsen för den relaterade aktien. All data aggregerades inom en bestämd tidsperiod på två år. Undersökningen utnyttjade maskininlärning för att träna tre maskininlärningsmodeller med textdata och aktiedata. Resultatet påvisade ingen tydlig korrelation mellan sentiment och aktierörelse. Vidare uppnåddes inte samma resultat som tidigare arbeten inom området. Den högst uppnådda noggrannheten med modellerna beräknades till 64%. / The present study examines the possibility of predicting stock movement on a daily basis with sentiment analysis of posts in a swedish stock trading forum. Sentiment analysis is used to find subjectivity in the form of emotions (sentiment) from text. Textdata was extracted from a stock forum to predict the share movement of the related share. All data was aggregated within a fixed period of two years. The analysis utilizes machine learning to train three machine learning models with textdata and stockdata. The result showed no clear correlation between sentiment and stock movement. Furthermore, the result was not able to replicate accuracy as previous work in the field. The highest accuracy achieved with the models was calculated at 64%.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-269615
Date January 2020
CreatorsOuadria, Michel Sebastian, Ciobanu, Ann-Stephanie
PublisherKTH, Medicinteknik och hälsosystem
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2020:007

Page generated in 0.0023 seconds