Return to search

Caractérisation structurale et de liaison membranaire de rétinol déshydrogénases

Les rétinol déshydrogénases ou RDHs sont des oxydoréductases inhérentes à l’accomplissement de la fonction visuelle de la rétine. Elles sont en effet impliquées dans le cycle visuel rétinien. Suite à l’absorption de la lumière par le pigment visuel des photorécepteurs, la rhodopsine, la RDH8 est la première enzyme qui va intervenir dans le cycle visuel après la libération du chromophore de la rhodopsine, le tout-trans rétinal. Ainsi, la RDH8 détoxifie les photorécepteurs car le tout-trans rétinal est une espèce très réactive qui peut induire des dommages à la rétine. La RDH11, quant à elle, agit de concert avec la RDH5 au niveau de la dernière étape du cycle visuel dans l’épithélium pigmentaire rétinien en transformant le 11-cis rétinol en 11-cis rétinal, qui sera réacheminé vers les photorécepteurs pour régénérer le pigment visuel. Toutefois, la structure tertiaire des RDHs n’a encore jamais été résolue. Ces enzymes sont néanmoins reconnues pour être associées aux membranes cellulaires par leur segment N- et/ou C-terminal. Nous avons alors entrepris ce travail afin de caractériser la structure de ces enzymes et mieux comprendre leur interaction avec les membranes. Nous avons étudié dans un premier temps différentes portions du segment N- et C-terminal de la RDH11 et la RDH8 respectivement, par différentes méthodes spectroscopiques. Nous avons alors observé que les segments de ces deux enzymes agissent par deux modes d’action totalement différents. La RDH11 ferait appel à un segment N-terminal transmembranaire qui adopte une conformation hélicale peu importe sa longueur, alors que la RDH8 utiliserait un segment C-terminal qui adopte une structure secondaire variable selon la longueur et dont la liaison est périphérique à la membrane. En plus, la liaison de la RDH8 par son segment C-terminal serait potentiellement facilitée par une ou plusieurs acylations situées au niveau de certaines cystéines. Les mesures de pression d’insertion maximale ont permis de comparer les interactions entre des segments de longueur variable en N-terminal de la RDH11 et en C-terminal de la RDH8 avec des monocouches de différents phospholipides. Ainsi, nous avons déterminé les interactions les plus favorables pour chacun de ces segments. Nous nous sommes focalisés par la suite sur l’étude de l’enzyme RDH8 et la comparaison de ses propriétés structurales, de stabilité et de liaison membranaire avec celles de sa forme tronquée RDH8t, dépourvue de son segment en C-terminal. Notons que nous avons mis au point un protocole adapté pour surexprimer et purifier la RDH8 et sa forme tronquée. À notre connaissance, il s’agit ici des premiers travaux de recherche rapportant la surexpression et la purification d’une RDH8 (bovine) complète dans un système procaryote (E. coli). Nous avons alors constaté que les deux formes de la RDH8, complète et tronquée, comprenaient majoritairement des hélices α en plus de la présence de feuillets β, en accord avec le motif de Rossmann fold suggéré dans la littérature pour cette famille d’enzymes. Il s’est avéré également que le segment C-terminal a un impact sur la stabilité de la RDH8 comme démontré par les mesures du contenu en structure secondaire de ces protéines en fonction des conditions de stockage et dans les expérimentations de dénaturation thermique. Enfin, les mesures de pression d’insertion maximale (PIM) et de synergie ont démontré que le segment C-terminal facilitait la liaison membranaire de la forme complète par rapport à la forme tronquée, notamment dans le contexte de phospholipides portant une tête polaire chargée négativement. L’interaction membranaire de la RDH8 pourrait donc impliquer des interactions électrostatiques. Des expériences de spectroscopie de fluorescence ont permis de confirmer l’implication du segment C-terminal dans la liaison de la RDH8 avec des bicouches lipidiques grâce à la présence de deux résidus tryptophanes uniquement dans son segment C-terminal. / In the retina, retinol dehydrogenases (RDHs) play a crucial role in the visual cycle allowing a good vision. The first step of the visual cycle is taking place in photoreceptors where RDH8 is located and then in the retinal pigmented epithelium (RPE) where RDH11 can be found. RDH11 is likely anchored to membranes by means of its N-terminal segment whereas RDH8 has been postulated to be membrane bound via its C-terminal segment. So, to better evaluate the role of the N-terminal segment of RDH11 and the C-terminal segment of RDH8 in the membrane binding of these proteins, different variants (Long and Short) of the aforementioned segments have been studied. In addition, mutations of the C-terminal segment of RDH8 have been introduced to monitor their interaction with lipid monolayers or bilayers. We have thus analyzed the secondary structure content of these segments by conventional spectroscopic methods such as circular dichroism (CD) and attenuated total reflectance (ATR) infrared spectroscopy whereas their interaction with phospholipids have been mainly monitored by surface pressure measurements when using monolayers and fluorescence spectroscopy for bilayers. Overall, we found that the N-terminal segment of RDH11 adopts an α-helix conformation acting as a transmembrane domain. Values of maximum insertion pressure (MIP) and synergy suggested a preferential binding of the RDH11 Long-peptide to phosphoethanolamine, which are abundant in the RPE. In the case of RDH8, our findings suggest an important role of the long C-terminal segment in membrane binding, which is supported by its helical content and the larger values of MIP and synergy. We also compared the behavior of RDH8 and its truncated form (RDH8t, without its C-terminal segment) to better understand the involvement of this segment in membrane binding. Thus, both enzymes have been expressed in E. coli, purified by affinity chromatography and studied by the spectroscopic methods mentioned above and by using MIP and synergy measurements. RDH8 and RDH8t display a secondary structure content in agreement with their predicted Rossmann fold. Interestingly, the removal of the C-terminal segment decreased the temporal and thermal stability of these enzymes. In addition, this segment contributes to protein-lipid interaction especially in presence of negatively charged phospholipids likely through electrostatic interactions. The involvement of the C-terminal segment of the RDH8 in its membrane anchoring has been further confirmed by fluorescence measurements of its two Trp residues located in this segment. The present characterization of RDH8 is a first step paving the way for the elucidation of its structural and functional features to gain a better understanding of its role within the visual cycle and investigating mechanisms of retinal pathogenesis.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/28116
Date24 April 2018
CreatorsLhor, Mustapha
ContributorsSalesse, Christian
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xviii, 287 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0027 seconds