Dans cette thèse on s'intéresse à la correspondance de Howe géométrique pour les paires duales réductives de type II (G = GL_n, H = GL_m) sur un corps local non-Archimédien F de caractéristique différente de 2, ainsi qu'à la fonctorialité de Langlands géométrique au niveau Iwahori. Notons S la représentation de Weil de G(F) × H(F) et I_H, I_G des sous groupes d'Iwahori de H(F) et G(F). On considère la version géométrique de la représentation S^(I_G×I_H) des algèbres de Hecke-Iwahori H_H et H_G sur laquelle agissent les foncteurs de Hecke. On obtient des résultats partiels sur la description géométrique de la catégorie correspondante. Nous proposons une conjecture décrivant le groupe de Grothendieck de cette catégorie comme module sur les algèbres de Hecke affines étendues de G et de H. Notre description est en termes d'un champ attaché aux groupes de Langlands duaux dans le style de l'isomorphisme de Kazhdan-Lusztig. On démontre cette conjecture pour toutes les paires (GL_1, GL_m). Plus généralement, étant donné deux groupes réductifs connexes G et H et un morphisme \check{G}× SL_2 \to \check{H} de groupes de Langlands duaux, on suggère un bimodule sur les algèbres de Hecke affines étendues de G et de H qui pourrait conjecturalement réaliser la fonctorialité de Langlands géométrique locale au niveau Iwahori.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00743280 |
Date | 13 June 2012 |
Creators | Banafsheh, Farang-Hariri |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds