Spelling suggestions: "subject:"faisceau perverse"" "subject:"faisceau perversa""
1 |
Déterminant microlocal d'un faisceau perversBondu, Raphaël 20 December 2002 (has links) (PDF)
Suivant des idées de B.Malgrange, on présente la construction d'un<br />nouvel invariant pour les faisceaux pervers : le déterminant microlocal. C'est une généralisation aux faisceaux pervers de la première classe caractéristique secondaire des fibrés plats.<br /><br /> Le déterminant microlocal est une classe de cohomologie sur le<br />fibré cotangent à support dans la variété caractéristique : il est<br />construit sur les déterminants des systèmes locaux obtenus par<br />microlocalisations le long des strates.<br /><br /> Pour montrer son existence, on ramène la variété<br />caractéristique en position générique par une transformation canonique en contrôlant le comportement des microlocalisés <br />par une telle transformation. On est alors ramené au cas de la dimension 2 où un calcul explicite est effectué en utilisant les descriptions combinatoires des faisceaux pervers de Ph. Maisonobe.
|
2 |
Polynômes de Kazhdan-Lusztig et cohomologie d'intersection des variétés de drapeauxChênevert, Gabriel January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
La correspondance de Howe géométrique modérément ramifiée pour les paires duales de type II dans le cadre du programme de Langlands géométriqueBanafsheh, Farang-Hariri 13 June 2012 (has links) (PDF)
Dans cette thèse on s'intéresse à la correspondance de Howe géométrique pour les paires duales réductives de type II (G = GL_n, H = GL_m) sur un corps local non-Archimédien F de caractéristique différente de 2, ainsi qu'à la fonctorialité de Langlands géométrique au niveau Iwahori. Notons S la représentation de Weil de G(F) × H(F) et I_H, I_G des sous groupes d'Iwahori de H(F) et G(F). On considère la version géométrique de la représentation S^(I_G×I_H) des algèbres de Hecke-Iwahori H_H et H_G sur laquelle agissent les foncteurs de Hecke. On obtient des résultats partiels sur la description géométrique de la catégorie correspondante. Nous proposons une conjecture décrivant le groupe de Grothendieck de cette catégorie comme module sur les algèbres de Hecke affines étendues de G et de H. Notre description est en termes d'un champ attaché aux groupes de Langlands duaux dans le style de l'isomorphisme de Kazhdan-Lusztig. On démontre cette conjecture pour toutes les paires (GL_1, GL_m). Plus généralement, étant donné deux groupes réductifs connexes G et H et un morphisme \check{G}× SL_2 \to \check{H} de groupes de Langlands duaux, on suggère un bimodule sur les algèbres de Hecke affines étendues de G et de H qui pourrait conjecturalement réaliser la fonctorialité de Langlands géométrique locale au niveau Iwahori.
|
4 |
Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente / Nearby cycles, vanishing cycles and Hodge theory for morphisms without slopeKochersperger, Matthieu 09 July 2018 (has links)
Dans cette thèse nous nous intéressons aux singularités d'espaces analytiques complexes définis comme le lieu des zéros d'un morphisme sans pente. Nous étudions dans un premier temps les cycles proches et les cycles évanescents associés à un tel morphisme. Dans un deuxième temps nous cherchons à comprendre la théorie de Hodge des morphismes sans pente.La première partie de cette thèse est consacrée à apporter des compléments au travail de P. Maisonobe sur les morphismes sans pente. Nous commençons par construire un morphisme de comparaison entre cycles proches algébriques (pour les $mathscr{D}$-modules) et cycles proches topologiques (pour les faisceaux pervers). Nous montrons ensuite que ce morphisme est un isomorphisme dans le cas d'un morphisme sans pente. Enfin nous construisons un foncteur cycles évanescents topologiques pour un morphisme sans pente et nous démontrons que ce foncteur et le foncteur cycles proches topologiques de P. Maisonobe se placent dans le diagramme de triangles exacts attendu.Dans la seconde partie de cette thèse nous étudions les morphismes sans pente pour les modules de Hodge mixtes. Nous démontrons dans un premier temps la commutativité des cycles proches et des cycles évanescents itérés appliqués à un module de Hodge mixte dans le cas d'un morphisme sans pente. Dans un deuxième temps nous définissons la notion << strictement sans pente >> pour un module de Hodge mixte et nous démontrons sa stabilité par image directe propre. Nous démontrons comme application la compatibilité de la filtration de Hodge et des filtrations de Kashiwara-Malgrange pour certains modules de Hodge purs supportés sur une hypersurface à singularités quasi-ordinaires. / In this thesis we are interested in singularities of complex varieties defined as the zero locus of a morphism without slope. In a first time we study nearby cycles and vanishing cycles associated to such morphisms. In a second time we want to understand Hodge theory of morphisms without slope.The first part of this thesis is devoted to add some complements to the work of P. Maisonobe on morphisms without slope. We start with the construction of a comparison morphism between algebraic nearby cycles (for $mathscr{D}$-modules) and topological nearby cycles (for perverse sheaves). Then we show that this morphism is an isomorphism in the case of a morphism without slope. Finally we construct a topological vanishing cycles functor for a morphism without slope et we prove that this functor and the topological nearby cycles functor of P. Maisonobe fit into the expected diagram of exact triangles.In the second part of the thesis we study morphisms without slope for mixed Hodge modules. We first show the commutativity of iterated nearby cycles and vanishing cycles applied to a mixed Hodge module in the case of a morphism without slope. Second we define the notion "strictly without slope" for a mixed Hodge module and we show that it is preserved by proper direct image. As an application we prove the compatibility of the Hodge filtration and Kashiwara-Malgrange filtrations for some pure Hodge modules with support an hypersurface with quasi-ordinary singularities.
|
Page generated in 0.0698 seconds