Return to search

Sous-variétés spéciales des espaces homogènes / Special subvarieties of homogeneous spaces

Le but de cette thèse est de construire de nouvelles variétés algébriques complexes de Fano et à canonique triviale dans les espaces homogènes et d'analyser leur géométrie. On commence en construisant les variétés spéciales comme lieux de zéros de fibrés homogènes dans les grassmanniennes généralisées. On donne une complète classification en dimension 4. On prouve que les uniques variétés de dimension 4 hyper-Kahleriennes ainsi construites sont les exemples de Beauville-Donagi et Debarre-Voisin. Le même résultat vaut dans les grassmanniennes ordinaires en toute dimension quand le fibré est irréductible. Ensuite on utilise les lieux de dégénérescence orbitaux (ODL), qui généralisent les lieux de dégénérescence classiques, pour construire d'autres variétés. On rappelle les propriétés basiques des ODL, qu'on définit à partir d'une adhérence d'orbite. On construit trois schémas de Hilbert de deux points sur une K3 comme ODL, et beaucoup d'autres exemples de variétés de Calabi-Yau et de Fano. Puis on étudie les adhérences d'orbites dans les représentations de carquois, et on décrit des effondrements de Kempf pour celles de type A_n et D_4; ceci nous permet de construire davantage de variétés spéciales comme ODL. Pour finir, on analyse les grassmanniennes bisymplectiques, qui sont des Fano particulières. Elles admettent l'action d'un tore avec un nombre fini de points fixes. On étudie leurs petites déformations. Ensuite, on étudie la cohomologie (équivariante) des grassmanniennes symplectiques, qui est utile pour mieux comprendre la cohomologie des grassmanniennes bisymplectiques. On analyse en détail un cas explicite en dimension 6. / The aim of this thesis is to construct new interesting complex algebraic Fano varieties and varieties with trivial canonical bundle and to analyze their geometry. In the first part we construct special varieties as zero loci of homogeneous bundles inside generalized Grassmannians. We give a complete classification for varieties of small dimension when the bundle is completely reducible. Thus, we prove that the only fourfolds with trivial canonical bundle so constructed which are hyper-Kahler are the examples of Beauville-Donagi and Debarre-Voisin. The same holds in ordinary Grassmannians when the bundle is irreducible in any dimension. In the second part we use orbital degeneracy loci (ODL), which are a generalization of classical degeneracy loci, to construct new varieties. ODL are constructed from a model, which is usually an orbit closure inside a representation. We recall the fundamental properties of ODL. As an illustration of the construction, we construct three Hilbert schemes of two points on a K3 surface as ODL, and many examples of Calabi-Yau and Fano threefolds and fourfolds. Then we study orbit closures inside quiver representations, and we provide crepant Kempf collapsings for those of type A_n, D_4; this allows us to construct some special varieties as ODL.Finally we focus on a particular class of Fano varieties, namely bisymplectic Grassmannians. These varieties admit the action of a torus with a finite number of fixed points. We find the dimension of their moduli space. We then study the equivariant cohomology of symplectic Grassmannians, which turns out to help understanding better that of bisymplectic ones. We analyze in detail the case of dimension 6.

Identiferoai:union.ndltd.org:theses.fr/2018AIXM0224
Date20 June 2018
CreatorsBenedetti, Vladimiro
ContributorsAix-Marseille, Manivel, Laurent
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds