Spelling suggestions: "subject:"algebraic group actions"" "subject:"lgebraic group actions""
1 |
Ga-actions on Complex Affine ThreefoldsHedén, Isac January 2013 (has links)
This thesis consists of two papers and a summary. The papers both deal with affine algebraic complex varieties, and in particular such varieties in dimension three that have a non-trivial action of one of the one-dimensional algebraic groups Ga := (C, +) and Gm := (C*, ·). The methods used involve blowing up of subvarieties, the correspondances between Ga - and Gm - actions on an affine variety X with locally nilpotent derivations and Z-gradings respectively on O(X) and passing from a filtered algebra A to its associated graded algebra gr(A). In Paper I, we study Russell’s hypersurface X , i.e. the affine variety in the affine space A4 given by the equation x + x2y + z3 + t2 = 0. We reprove by geometric means Makar-Limanov’s result which states that X is not isomorphic to A3 – a result which was crucial to Koras-Russell’s proof of the linearization conjecture for Gm -actions on A3. Our method consist in realizing X as an open part of a blowup M −→ A3 and to show that each Ga -action on X descends to A3 . This follows from considerations of the graded algebra associated to O(X ) with respect to a certain filtration. In Paper II, we study Ga-threefolds X which have as their algebraic quotient the affine plane A2 = Sp(C[x, y]) and are a principal bundle above the punctured plane A2 := A2 \ {0}. Equivalently, we study affine Ga -varieties Pˆ that extend a principal bundle P over A2, being P together with an extra fiber over the origin in A2. First the trivial bundle is studied, and some examples of extensions are given (including smooth ones which are not isomorphic to A2 × A). The most basic among the non-trivial principal bundles over A2 is SL2 (C) −→ A2, A 1→ Ae1 where e1 denotes the first unit vector, and we show that any non-trivial bundle can be realized as a pullback of this bundle with respect to a morphism A2 −→ A2. Therefore the attention is then restricted to extensions of SL2(C) and find two families of such extensions via a study of the graded algebras associated with the coordinate rings O(Pˆ) '→ O(P ) with respect to a filtration which is defined in terms of the Ga -actions on P and Pˆ respectively.
|
2 |
Actions des groupes algébriques sur les variétés affines et normalité d'adhérences d'orbites / Actions of algebraic groups on affine varieties and normality of orbits closuresKuyumzhiyan, Karine 10 May 2011 (has links)
Cette thèse est consacrée aux actions des groupes de transformations algébriques sur les variétés affines algébriques. Dans la première partie, on étudie la normalité des adhérences des orbites de tore maximal dans un module rationnel de groupe algébrique simple. La seconde partie porte sur les actions du groupe d'automorphismes d'une variété affine. Nous nous intéressons aux propriétés de transitivité et de transitivité multiple de ces actions sur le lieu lisse de la variété. / This thesis is devoted to the actions of groups of algebraic transformations on affine algebraic varieties. In the first part we study normality of closures of maximal torus orbits in the rational modules of simple algebraic groups. The second part deals with actions of automorphism groups on affine varieties. We study here transitivity and multiple transitivity of such an action on the set of smooth points.
|
3 |
Sous-variétés spéciales des espaces homogènes / Special subvarieties of homogeneous spacesBenedetti, Vladimiro 20 June 2018 (has links)
Le but de cette thèse est de construire de nouvelles variétés algébriques complexes de Fano et à canonique triviale dans les espaces homogènes et d'analyser leur géométrie. On commence en construisant les variétés spéciales comme lieux de zéros de fibrés homogènes dans les grassmanniennes généralisées. On donne une complète classification en dimension 4. On prouve que les uniques variétés de dimension 4 hyper-Kahleriennes ainsi construites sont les exemples de Beauville-Donagi et Debarre-Voisin. Le même résultat vaut dans les grassmanniennes ordinaires en toute dimension quand le fibré est irréductible. Ensuite on utilise les lieux de dégénérescence orbitaux (ODL), qui généralisent les lieux de dégénérescence classiques, pour construire d'autres variétés. On rappelle les propriétés basiques des ODL, qu'on définit à partir d'une adhérence d'orbite. On construit trois schémas de Hilbert de deux points sur une K3 comme ODL, et beaucoup d'autres exemples de variétés de Calabi-Yau et de Fano. Puis on étudie les adhérences d'orbites dans les représentations de carquois, et on décrit des effondrements de Kempf pour celles de type A_n et D_4; ceci nous permet de construire davantage de variétés spéciales comme ODL. Pour finir, on analyse les grassmanniennes bisymplectiques, qui sont des Fano particulières. Elles admettent l'action d'un tore avec un nombre fini de points fixes. On étudie leurs petites déformations. Ensuite, on étudie la cohomologie (équivariante) des grassmanniennes symplectiques, qui est utile pour mieux comprendre la cohomologie des grassmanniennes bisymplectiques. On analyse en détail un cas explicite en dimension 6. / The aim of this thesis is to construct new interesting complex algebraic Fano varieties and varieties with trivial canonical bundle and to analyze their geometry. In the first part we construct special varieties as zero loci of homogeneous bundles inside generalized Grassmannians. We give a complete classification for varieties of small dimension when the bundle is completely reducible. Thus, we prove that the only fourfolds with trivial canonical bundle so constructed which are hyper-Kahler are the examples of Beauville-Donagi and Debarre-Voisin. The same holds in ordinary Grassmannians when the bundle is irreducible in any dimension. In the second part we use orbital degeneracy loci (ODL), which are a generalization of classical degeneracy loci, to construct new varieties. ODL are constructed from a model, which is usually an orbit closure inside a representation. We recall the fundamental properties of ODL. As an illustration of the construction, we construct three Hilbert schemes of two points on a K3 surface as ODL, and many examples of Calabi-Yau and Fano threefolds and fourfolds. Then we study orbit closures inside quiver representations, and we provide crepant Kempf collapsings for those of type A_n, D_4; this allows us to construct some special varieties as ODL.Finally we focus on a particular class of Fano varieties, namely bisymplectic Grassmannians. These varieties admit the action of a torus with a finite number of fixed points. We find the dimension of their moduli space. We then study the equivariant cohomology of symplectic Grassmannians, which turns out to help understanding better that of bisymplectic ones. We analyze in detail the case of dimension 6.
|
Page generated in 0.0734 seconds