Return to search

On linear equations in primes and powers of two

It is known that the binary Goldbach problem is one of the open problems on linear equations in primes, and it has the Goldbach-Linnik problem, that is, representation of an even integer in the form of two odd primes and powers of two, as its approximate problem. The theme of my research is on linear equations in primes and powers of two. Precisely, there are two cases: one pair of linear equations in primes and powers of two, and one class of pairs of linear equations in primes and powers of two, in this thesis.
In 2002, D.R. Heath-Brown and P.C. Puchta obtained that every sufficiently large even integer is the sum of two odd primes and k powers of two. Here k = 13, or = 7 under the generalized Riemann hypothesis. In 2010, B. Green and T. Tao obtained that every pair of linear equations in four prime variables with coefficients matrix A = (a_ij)s×t with s ≤ t, satisfying nondegenerate condition, that is, A has full rank and the only elements of the row-space of A over Q with two or fewer nonzero entries is the zero vector, is solvable. The restriction on the coefficient matrix means that they excluded the case of the binary Goldbach problem. Motivated by the above results, it is obtained that for every pair of sufficiently large positive even integers B1, B2, the simultaneous equation

{█({B1 = p1 + p2 + 2v1 + 2v2 + · · · + 2vk ,@B2 = p3 + p4 + 2v1 + 2v2 + · · · + 2vk ,)┤ (1)
is solvable, where p1, · · · , p4 are odd primes, each vi is a positive integer, and the positive integer k ≥ 63 or ≥ 31 under the generalized Riemann
hypothesis. Note that, in 1989, M.C. Liu and K.M. Tsang have obtained that subject to some natural conditions on the coefficients, every pair of linear equations in five prime variables is solvable. Therefore one class of pairs of linear equations in four prime variables with special coefficient matrix and powers of two is considered. Indeed, it is deduced that every pair of integers B1 and B2 satisfying B1 ≡ 0 (mod 2), 3BB1 > e^(eB^48 ), B2 ≡ ∑_1^4▒= 1^(a_i ) (mod 2) and |B2| < BB1, where B = max1≤j≤4(2, |aj|), can be represented as
{█(B1 = 〖p1〗_1 + p2 + 2^(v_1 ) + 2^(v_2 )+ · · · + 2^(v_k )@B2 = a1p1 + a2p2 + a3p3 + a4p4 + 2^(v_1 )+ 2^(v_2 )+ · · · + 2^(v_k ) )┤ (2)

with k being a positive integer. Here p1, · · · p4 are odd primes, each 〖v 〗_iis a positive integer and the integral coefficients ai (i = 1, 2, 3, 4) satisfy
{█((〖a 〗_1- 〖a 〗_2, 〖a 〗_3, 〖a 〗_4) = 1,@〖a 〗_1 〖a 〗_2< 0, 〖a 〗_3 〖a 〗_4<0,)┤
Moreover it is calculated that the positive integer k ≥ g(〖a 〗_1- 〖a 〗_2, 〖a 〗_3, 〖a 〗_4) where g(〖a 〗_21- 〖a 〗_22, 〖a 〗_23, 〖a 〗_24) = [(log⁡〖G(〖a 〗_21, …, 〖a 〗_24 〗)-log⁡〖F (〖a 〗_21, …, 〖a 〗_24)〗)/log0.975805-84.0285], (3)

G(〖a 〗_21, 〖a 〗_22, 〖a 〗_23, 〖a 〗_24) = (min(1/(|a_24 |), 1/(|a_23 |)) - (〖|a〗_(21 )- a_22 |)/(|〖a_23 a〗_24 |) 〖(3B)〗^(-1) ×〖(3B)〗^(-1) (1-0.000001)- 〖(3B)〗^(-1-4), with B = max1≤j≤4(2, |a2j|), and
F(a_21, …, a_24) = √(f(a_21)f〖(a〗_22 ))
with

f(a_2i) = {█(4414.15h (a_21-1)+5.088331 if a_21≠1@59.8411 if a_21=1,)┤
for i = 1, 2, and h(n) =∏_(p|n,p>2)▒(p-1)/(p-2). This result, if without the powers of
two, can make up some of the cases excluded in Green and Tao’s paper. / published_or_final_version / Mathematics / Doctoral / Doctor of Philosophy

Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/188257
Date January 2013
CreatorsKong, Yafang., 孔亚方.
ContributorsTsang, KM
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
Sourcehttp://hub.hku.hk/bib/B50533769
RightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License
RelationHKU Theses Online (HKUTO)

Page generated in 0.0018 seconds