Dans un modèle de durées de vie avec des risques concurrents, les systèmes peuvent tomber en panne dans le temps. Ces pannes sont dues à une cause parmi plusieurs possibles et il arrive parfois que celle-ci soit inconnue. C'est alors qu'on peut faire appel à l'algorithme EM pour calculer les estimateurs du maximum de vraisemblance. Cette technique utilise la fonction de vraisemblance des données complètes pour trouver les estimateurs même si les données observées sont incomplètes. Pour les systèmes ayant leur cause de panne inconnue, on peut en prendre un échantillon pour une inspection plus approfondie qui dévoilera les vraies causes de panne. Cette étape peut améliorer l'estimation des probabilités de masque et des fonc- tions de risque spécifiques aux causes de panne. Après avoir expliqué la théorie de l'algorithme EM, le modèle des risques concurrents, ainsi que les travaux réalisés sur le sujet, on étudie l'impact qu'a sur les estimateurs le fait de ne pas envoyer un échantillon des systèmes masqués à un examen approfondi qui permettrait de trouver la vraie cause de panne.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/18084 |
Date | 11 April 2018 |
Creators | Michaud, Isabelle |
Contributors | Duchesne, Thierry |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0021 seconds