Return to search

Representation learning for few-shot image classification

En tant qu'algorithmes d'apprentissage automatique à la pointe de la technologie, les réseaux de neurones profonds nécessitent de nombreux exemples pour bien fonctionner sur une tâche d'apprentissage. La collecte et l'annotation de multiples échantillons nécessitent un travail humain important et c'est même impossible dans la plupart des problèmes du monde réel tel que l'analyse de données biomédicales. Dans le contexte de la vision par ordinateur, la classification d'images à quelques plans vise à saisir la capacité humaine à apprendre de nouveaux concepts avec peu de supervision. À cet égard, l'idée générale est de transférer les connaissances des catégories de base avec plus d'encadrement vers des classes nouvelles avec peu d'exemples. En particulier, les approches actuelles d'apprentissage à quelques coups pré entraînent un modèle sur les classes de base disponible pour généraliser aux nouvelles classes, peut-être avec un réglage fin. Cependant, la généralisation du modèle actuel est limitée en raison de certaines hypothèses lors de la préformation et de restrictions lors de l'étape de mise au point. Cette thèse vise à assouplir trois hypothèses des modèles d'apprentissage à quelques plans actuels et nous proposons un apprentissage de représentation pour la classification d'images à quelques plans. Tout d'abord, le gel d'un modèle préformé semble inévitable dans la phase de réglage fin en raison de la forte possibilité de surentraînement sur quelques exemples. Malheureusement, l'apprentissage par transfert avec une hypothèse de modèle gelé limite la capacité du modèle puisque le modèle n'est pas mis à jour avec aucune connaissance des nouvelles classes. Contrairement au gel d'un modèle, nous proposons un alignement associatif qui permet d'affiner et de mettre à jour le réseau sur de nouvelles catégories. Plus précisément, nous présentons deux stratégies qui détectent et alignent les nouvelles classes sur les catégories de base hautement liées. Alors que la première stratégie pousse la distribution des nouvelles classes au centre de leurs catégories de base associées, la seconde stratégie effectue une correspondance de distribution à l'aide d'un algorithme d'entraînement contradictoire. Dans l'ensemble, notre alignement associatif vise à éviter le surentraînement et à augmenter la capacité du modèle en affinant le modèle à l'aide de nouveaux exemples et d'échantillons de base associés. Deuxièmement, les approches actuelles d'apprentissage à quelques coups effectuent le transfert de connaissances vers de nouvelles classes distinctes sous l'hypothèse uni modale, où tous les exemples d'une seule classe sont représentés par un seul cluster. Au lieu de cela, nous proposons une approche d'apprentissage de l'espace des caractéristiques basée sur le mélange (MixtFSL) pour déduire une représentation multimodale. Alors qu'un précédent travail basé sur un modèle de mélange d'Allen et al. citeallen2019infinite est basé sur une méthode de clusters classique de manière non différentielle, notre MixtFSL est un nouveau modèle multimodale de bout en bout et entièrement différentielle. MixtFSL capture la multimodale des classes de base sans aucun algorithme de clusters classique à l'aide d'un cadre en deux étapes. La première phase s'appeler formation initiale et vise à apprendre la représentation préliminaire du mélange avec une paire de fonctions de perte. Ensuite, l'étape suivante progressive, la deuxième étape, stabilise la formation avec un cadre de formation de type enseignant-élève utilisant une fonction de perte unique. Troisièmement, contrairement aux techniques actuelles à quelques prises de vue consistant à représenter chaque exemple d'entrée avec une seule entité à la fin du réseau, nous proposons un extracteur d'entités d'ensemble et des ensembles d'entités correspondantes qui assouplissent l'hypothèse typique basée sur une seule entité en raisonnant sur des ensembles d'entités. Ici, nous émettons l'hypothèse que l'hypothèse d'une seule caractéristique est problématique dans la classification d'images à quelques prises de vue puisque les nouvelles classes sont différentes des classes de base préformées. À cette fin, nous proposons nouvel extracteur de caractéristiques d'ensemble d'apprentissage profond basé sur les réseaux de neurones hybrides convolution-attention. De plus, nous suggérons trois métriques ensemble à ensemble non paramétriques pour séduire la classe de l'entrée donnée. Cette thèse utilise plusieurs indicateurs standards publiés dans la littérature sur l'apprentissage en peu d'exemples et l'ossature de réseau pour évaluer les méthodes que nous proposons. / As the current state-of-the-art machine learning algorithms, deep neural networks require many examples to perform well on a learning task. Gathering and annotating many samples requires significant human labor, and it is even impossible in most real-world problems such as biomedical data analysis. Under the computer vision context, few-shot image classification aims at grasping the human ability to learn new concepts with little supervision. In this respect, the general idea is to transfer knowledge from base categories with more supervision to novel classes with few examples. In particular, the current few-shot learning approaches pre-train a model on available base classes to generalize to the novel classes, perhaps with fine-tuning. However, the current model's generalization is limited because of some assumptions in the pre-training and restrictions in the fine-tuning stage. This thesis aims to relax three assumptions of the current few-shot learning models, and we propose representation learning for few-shot image classification. First, freezing a pre-trained model looks inevitable in the fine-tuning stage due to the high possibility of overfitting on a few examples. Unfortunately, transfer learning with a frozen model assumption limits the model capacity since the model is not updated with any knowledge of the novel classes. In contrast to freezing a model, we propose associative alignment that enables fine-tuning and updating the network on novel categories. Specifically, we present two strategies that detect and align the novel classes to the highly related base categories. While the first strategy pushes the distribution of the novel classes to the center of their related base categories, the second strategy performs distribution matching using an adversarial training algorithm. Overall, our associative alignment aims to prevent overfitting and increase the model capacity by refining the model using novel examples and related base samples. Second, the current few-shot learning approaches perform transferring knowledge to distinctive novel classes under the uni-modal assumption, where all the examples of a single class are represented with a single cluster. Instead, we propose a mixture-based feature space learning (MixtFSL) approach to infer a multi-modal representation. While a previous mixture-model-based work of Allen et al. [1] is based on a classical clustering method in a non-differentiable manner, our MixtFSL is a new end-to-end multi-modal and fully differentiable model. MixtFSL captures the multi-modality of base classes without any classical clustering algorithm using a two-stage framework. The first phase is called initial training and aims to learn preliminary mixture representation with a pair of loss functions. Then, the progressive following stage, the second stage, stabilizes the training with a teacher-student kind of training framework using a single loss function. Third, unlike the current few-shot techniques of representing each input example with a single feature at the end of the network, we propose a set feature extractor and matching feature sets that relax the typical single feature-based assumption by reasoning on feature sets. Here, we hypothesize that the single feature assumption is problematic in few-shot image classification since the novel classes are different from pre-trained base classes. To this end, we propose a new deep learning set feature extractor based on the hybrid convolution-attention neural networks. Additionally, we offer three non-parametric set-to-set metrics to infer the class of the given input. This thesis employs several standard benchmarks of few-shot learning literature and network backbones to evaluate our proposed methods.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/73767
Date13 December 2023
CreatorsAfrasiyabi, Arman
ContributorsGagné, Christian, Lalonde, Jean-François
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xiv, 112 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0034 seconds