Return to search

Développement de schémas de découplage pour la résolution de systèmes dynamiques sur architecture de calcul distribuée

Nous nous intéressons dans ce mémoire à des méthodes de parallélisation par découplage du système dynamique. Plusieurs applications numériques de nos jours conduisent à des systèmes dynamiques de grande taille et nécessitent des méthodes de parallélisation en conséquence pour pouvoir être résolues sur les machines de calcul à plusieurs processeurs. Notre but est de trouver une méthode numérique à la fois consistante et stable pour réduire le temps de la résolution numérique. La première approche consiste à découpler le système dynamique en sous-systèmes contenant des sous-ensembles de variables indépendants et à remplacer les termes de couplage par l'extrapolation polynomiale. Une telle méthode a été introduite sous le nom de schéma C (p, q, j), nous améliorons ce schéma en introduisant la possibilité à utiliser des pas de temps adaptatifs. Cependant, notre étude montre que cette méthode de découplage ne peut satisfaire les propriétés numériques que sous des conditions très strictes et ne peut donc pas s'appliquer aux problèmes raides présentant des couplages forts entre les sous-systèmes. Afin de pouvoir répondre à cette problématique de découplage des systèmes fortement couplés, on introduit le deuxième axe de recherche, dont l'outil principal est la réduction d'ordre du modèle. L'idée est de remplacer le couplage entre les sous-ensembles de variables du système par leurs représentations sous forme réduite. Ces sous-systèmes peuvent être distribués sur une architecture de calcul parallèle. Notre analyse du schéma de découplage résultant nous conduit à définir un critère mathématique pour la mise à jour des bases réduites entre les sous-systèmes. La méthode de réduction d'ordre du modèle utilisée est fondée sur la décomposition orthogonale aux valeurs propres (POD). Cependant, ne disposant pas à priori des données requises pour la construction de la base réduite, nous proposons alors un algorithme de construction incrémentale de la base réduite permettant de représenter le maximum des dynamiques des solutions présentes dans l'intervalle de simulation. Nous avons appliqué la méthode proposée sur les différents systèmes dynamiques tels que l'exemple provenant d'une EDP et celui provenant de l'équation de Navier Stokes. La méthode proposée montre l'avantage de l'utilisation de l'algorithme de découplage basé sur la réduction d'ordre. Les solutions numériques sont obtenues avec une bonne précision comparées à celle obtenue par une méthode de résolution classique tout en restant très performante selon le nombre de sous-systèmes définis.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00838596
Date30 September 2010
CreatorsPham, Duc Toan
PublisherUniversité Claude Bernard - Lyon I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds