Les problèmes de robustesse liés à la substitution du calcul exact sur les réels par le calcul flottant approché sont souvent un obstacle à l'implantation pratique des algorithmes géométriques. Si l'adoption du paradigme exact apporte une solution satisfaisante à ce type de problèmes pour les algorithmes ayant un résultat purement combinatoire, cette solution ne permet cependant pas de résoudre en pratique le cas des algorithmes qui réutilisent voire cascadent la construction de nouveaux objets géométriques. Cette thèse aborde le problème de l'arrondi sur la grille entière du résultat d'opérations booléennes sur des régions polygonales et propose plusieurs notions d'arrondi permettant de garantir certaines propriétés métriques et topologiques intéressantes entre le résultat exact et sa version arrondie telles que la garantie de relations d'inclusion et la préservation de la convexité du résultat. Nos méthodes sont basées sur l'utilisation de constructeurs élémentaires arrondis pour lesquels nous présentons également plusieurs algorithmes efficaces. Nous proposons enfin des tests rapides permettant la détection robuste d'intersection entre plusieurs types d'objets convexes dans le plan et dans l'espace. L'ensemble de ces solutions trouvent une application directe en CAO et en graphisme.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00471447 |
Date | 05 December 2003 |
Creators | Guigue, Philippe |
Publisher | Université de Nice Sophia-Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds