Genome-wide association studies have greatly improved our understanding of the contribution of common variants to the genetic architecture of complex traits. However, two major limitations have been highlighted. First, common variant associations typically do not identify the causal variant and/or the gene that it is exerting its effect on to influence a trait. Second, common variant associations usually consist of variants with small effects. As a consequence, it is more challenging to harness their translational impact. Association studies of rare variants and complex traits may be able to help address these limitations. Empirical population genetic data shows that deleterious variants are rare. More specifically, there is a very strong depletion of common protein truncating variants (PTVs, commonly referred to as loss-of-function variants) in the genome, a group of variants that have been shown to have large effect on gene function, are enriched for severe disease-causing mutations, but in other instances may actually be protective against disease. This thesis is divided into three parts dedicated to the study of protein truncating variants, their medical relevance, and their functional consequences. First, I present statistical, bioinformatic, and computational methods developed for the study of protein truncating variants and their association to complex traits, and their functional consequences. Second, I present application of the methods to a number of case-control and quantitative trait studies discovering new variants and genes associated to breast and ovarian cancer, type 1 diabetes, lipids, and metabolic traits measured with NMR spectroscopy. Third, I present work on improving annotation of protein truncating variants by studying their functional consequences. Taken together, these results highlight the utility of interrogating protein truncating variants in medical and functional genomic studies.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:664835 |
Date | January 2015 |
Creators | Rivas Cruz, Manuel A. |
Contributors | McCarthy, Mark I.; Donnelly, Peter |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:a042ca18-7b35-4a62-aef0-e3ba2e8795f7 |
Page generated in 0.0015 seconds