In this study we are interested on the following 4-dimensional system of stochastic differential equations.dS=(-βSI+μ(K-S)+αI+ζR)dt-σ_1 SIF_1 (S,E,I,R)dW_1+σ_4 RF_4 (S,E,I,R)dW_4 dE=(βSI-(μ+η)E)dt+σ_1 SIF_1 (S,E,I,R)dW_1-σ_2 EF_2 (S,E,I,R)dW_2 dI=(ηE-(α+γ+μ)I)dt+σ_2 EF_2 (S,E,I,R)dW_2-σ_3 IF_3 (S,E,I,R)dW_3 dR=(γI-(μ+ζ)R)dt+σ_3 IF_3 (S,E,I,R)dW_3-σ_4 RF_4 (S,E,I,R)dW_4 with variance parameters σ_i≥0 and constants α,β,η,γ,μ ζ≥0. This system may be used to model the dynamics of susceptible, exposed, infected and recovering individuals subject to a present virus with state-dependent random transitions. Our main goal is to prove the existence of a bounded, unique, strong (pathwise), global solution to this system, and to discuss asymptotic stochastic and moment stability of the two equilibrium points, namely the disease free and the endemic equilibria. In this model, as suggested by our advisor, diffusion coefficients can be any local Lipschitz continuous functions on bounded domain D={(S,E,I,R)∈R_+^4:00 of maximum carrying capacity and W_i are independent and identical Wiener processes defined on a complete probability space (Ω,F,{F_t }_(t≥0),P). At the end we carry out some simulations to illustrate our results.
Identifer | oai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:dissertations-3242 |
Date | 01 August 2024 |
Creators | Chandrasena, Shanika Dilani |
Publisher | OpenSIUC |
Source Sets | Southern Illinois University Carbondale |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations |
Page generated in 0.002 seconds