Nanocompósitos de matriz de alumina (Al2O3) reforçada com uma segunda fase nanométrica apresentam melhores propriedades mecânicas, especialmente dureza, tenacidade à fratura e resistência ao desgaste, quando comparado à matriz monolítica. O carbeto de nióbio (NbC) possui propriedades que o tornam um material de reforço ideal em cerâmicas de matriz Al2O3, como alto ponto de fusão e dureza, baixa reatividade química e coeficiente de expansão térmica similar à Al2O3, prevenindo o aparecimento de trincas que diminuem a resistência do material. As maiores reservas de nióbio estão localizadas no Brasil e o estudo em torno do seu aproveitamento é importante para o país. Assim, o objetivo deste trabalho foi obter e caracterizar nanocompósitos de matriz de Al2O3 contendo 5% em volume de inclusões nanométricas de NbC obtidos por moagem reativa de alta energia, usando sinterização convencional, Spark Plasma Sintering (SPS) e micro-ondas. Para isso, os pós nanométricos precursores de Al2O3-NbC foram obtidos por moagem reativa de alta energia, realizada por 330 minutos em moinho tipo SPEX, desaglomerados, lixiviados com ácido clorídrico, adicionados à matriz de Al2O3 na proporção de 5% em volume e secos sob fluxo de ar. Os pós de Al2O3-5%vol.NbC foram sinterizados por diferentes métodos: convencional em atmosfera de argônio, micro-ondas e SPS, usando diferentes temperaturas. Os pós precursores foram caracterizados por difração de raios X (DRX), microscopia eletrônica de varredura (MEV) e medida de tamanho de partículas. Os nanocompósitos sinterizados convencionalmente e por SPS foram caracterizados quanto a sua microestrutura, densidade aparente em relação a densidade teórica e dureza por nanoindentação. Os nanocompósitos sinterizados por SPS foram caracterizados quanto ao módulo de Young por nanoindentação, tenacidade à fratura e resistência a flexão em três pontos. Os nanocompósitos sinterizados convencionalmente e por SPS foram caracterizados quanto à resistência ao desgaste por ensaios esfera no disco, usando esferas de WC-6%Co com cargas de 30 e 60 N e esferas de Al2O3 com cargas de 15 e 30 N. Os resultados mostram que a moagem reativa de alta energia foi completa e efetiva na obtenção de pós nanométricos, com tamanhos de cristalito iguais a 9,1 e 9,7 nm, para Al2O3 e NbC, respectivamente. Além disso, a desaglomeração, após o processo de moagem reativa de alta energia, foi eficaz na dispersão das inclusões de NbC na matriz de Al2O3. No entanto, não foi possível obter nanocompósitos de Al2O3-5%vol.NbC com alta densidade usando os processos de sinterização convencional (92-93 %DT) e micro-ondas (80-90 %DT). No processo de sinterização por SPS, os nanocompósitos apresentaram densidades próximas à teórica (99 %DT) e, consequentemente, melhores durezas e resistência ao desgaste, quando comparadas aos materiais obtidos em forno convencional. Os resultados obtidos na caracterização da resistência ao desgaste confirmaram que esta propriedade é influenciada por diversos fatores, como método e temperatura de sinterização, as esferas utilizadas como contra-materiais e cargas aplicadas durante o ensaio. Os resultados indicaram que nanocompósitos de Al2O3-5%vol.NbC sinterizados por SPS apresentam potencial para aplicações em diversos segmentos industriais, onde se exige materiais de alto desempenho mecânico e de desgaste. / Los nanocomposites de matriz alúmina (Al2O3) reforzados con una segunda fase nanométrica presentan mejores propiedades mecánicas, especialmente de dureza, tenacidad a la fractura y resistencia al desgaste, en comparación con el material monolítico de alúmina. Por otra parte, el carburo de niobio (NbC), como refuerzo de segunda fase, presenta propiedades que lo convierten en un material ideal para las cerámicas de matriz Al2O3, tales como alta temperatura de fusión, alta dureza, baja reactividad química y un coeficiente de expansión térmica similar al material de Al2O3, evitando así la aparición de grietas que disminuyen la resistencia del material. Actualmente, las mayores reservas de niobio se encuentran en Brasil y el estudio sobre su uso es un hito muy importante para el país. Por lo tanto, el objetivo de esta tesis es obtener y caracterizar nanocomposites de matriz de Al2O3 con una segunda fase del 5% en volumen de nanopartículas de NbC obtenidos por molienda reactiva de alta energía y, mediante la sinterización convencional, Spark Plasma Sintering (SPS) y microondas. Para ello, los polvos precursores nanométricos de Al2O3-NbC fueron obtenidos mediante molienda reactiva de alta energía, durante 330 minutos en molino SPEX, desaglomerados, lixiviados con ácido clorhídrico, añadidos a la matriz de Al2O3 en la proporción de 5% en volumen y secado bajo flujo de aire. Los polvos de Al2O3-5vol.%NbC fueron sinterizados por diferentes métodos: convencional bajo una atmósfera de argón, microondas y SPS usando diferentes temperaturas. Los polvos precursores se caracterizaron por difracción de rayos X (XRD), microscopía electrónica de barrido (SEM) y la medición del tamaño de partícula. Los nanocomposites sinterizados convencionalmente y mediante SPS se caracterizaron microestructuralmente, se estudió la densidad aparente y la dureza por nanoindentación. Los nanocomposites sinterizados mediante SPS fueron caracterizados mediante el módulo de Young por nanoindentación, la tenacidad a la fractura y la resistencia a la flexión en tres puntos. Por otra parte, los nanocomposites sinterizados convencionalmente y mediante SPS fueron caracterizados respecto a resistencia al desgaste mediante la técnica de \"ball-on-disc\", utilizando esferas de WC-6%Co con cargas 30 y 60 N y esferas de Al2O3 con cargas 15 y 30 N. Los resultados muestran que la molienda reactiva de alta energía ha sido completa y eficaz en la obtención de polvos nanométricos con tamaños de cristalito de 9,1 y 9,7 nm para la Al2O3 y NbC, respectivamente. Además, la desaglomeración, después del proceso de molienda reactiva de alta energía, fue eficaz en la dispersión de las inclusiones de NbC en la matriz de Al2O3. Sin embargo, no ha sido posible obtener nanocomposites de Al2O3-5vol.%NbC con alta densidad usando procesos de sinterización convencional (92-93 %DT) y microondas (80-90 %DT). En el proceso de sinterización mediante SPS, los nanocomposites presentaron densidades cercanas a la teórica (99 %DT) y, en con-secuencia, mejor dureza y resistencia al desgaste en comparación con los materiales obtenidos en un horno convencional. Los resultados correspondientes a la resistencia al desgaste han confirmado que esta propiedad está influenciada por varios factores tales como el método y temperatura de sinterización, las esferas utilizadas como contramaterial y las cargas aplicadas durante el test. Los resultados finales indicaron que los nanocomposites de Al2O3-5vol.%NbC obtenidos mediante SPS tienen un gran potencial para las distintas aplicaciones industriales, las cuales re-quieren materiales de alto rendimiento mecánico y al desgaste.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-20112017-160414 |
Date | 25 July 2017 |
Creators | Laís Ribeiro Rodrigues Alecrim |
Contributors | Eliria Maria de Jesus Agnolon Pallone, Maria Amparo Borrell Tomás, Conrado Ramos Moreira Afonso, Vera Lúcia Arantes, Alfonso Cristóbal Cárcel González, Sylma Carvalho Maestrelli, João Adriano Rossignolo |
Publisher | Universidade de São Paulo, Engenharia e Ciência de Materiais, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Spanish |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0151 seconds