Progression and pattern of changes in different biomarkers of Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) like [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) have been carefully investigated over the past decades. However, there have been substantially less studies investigating the potential of combining these imaging modalities to make use of multimodal information to further improve understanding, detection and differentiation of various dementia syndromes. Further the role of preprocessing has been rarely addressed in previous research although different preprocessing algorithms have been shown to substantially affect diagnostic accuracy of dementia. In the present work common preprocessing procedures used to scale FDG-PET data were compared to each other. Further, FDG-PET and MRI information were jointly analyzed using univariate and multivariate techniques. The results suggest a highly differential effect of different scaling procedures of FDG-PET data onto detection and differentiation of various dementia syndromes. Additionally, it has been shown that combining multimodal information does further improve automatic detection and differentiation of AD and FTLD.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:11143 |
Date | 02 October 2011 |
Creators | Dukart, Jürgen |
Contributors | Schroeter, Matthias, Müller, Karsten, Obrig, Helmut, Möller, Harald, Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds