Return to search

Herstellung von Einzelschichten und Solarzellen im Bereich der sehr hohen Plasmaanregungsfrequenzen (VHF) und Schichtdiagnostik

Diese Arbeit beschäftigt sich mit den wesentlichen Aspekten der Hochrateabscheidung von amorphen (a-Si:H) und mikrokristallinen (μc-Si:H) Silizium-Schichten und Solarzellen. Die neuartige plasmaunterstützte chemische Gasphasenabscheidung unter Anwendung von den sehr hohen Anregungsfrequenzen bis 140 MHz (VHF-PECVD) wurde demonstriert. Die durchgeführten Untersuchungen befassten sich hauptsächlich mit der Anpassung der Anlagentechnik für den VHF Bereich und der Entwicklung des hochproduktiven Herstellungsverfahrens ohne Einbußen bei den Schichteigenschaften und dem Solarzellenwirkungsgrad. Durch Frequenzerhöhung bis 140 MHz wurde eine Steigerung der i-Schicht-Abscheiderate von 70 % sowohl für a-Si:H als auch für μc-Si:H realisiert. Die Weiteroptimierung des Solarzellenaufbaus zeigt die hervorragende Eignung des Herstellungsprozesses für die Abscheidung von hocheffizienten Solarzellen (ca. 10,7 % für a-Si:H- und 9,5 % für μc-Si:H-Zellen). Der neuartige VHF-PECVD-Prozess wurde außerdem für die Abscheidung von den Passivierungsschichten für die Silizium-Heteroübergangs-Solarzellen (HIT) getestet. Die Arbeit im VHF-Bereich ermöglicht einen Einsatz von hohen Depositionsraten bis 1 nm/s ohne Einbußen bei den Passivierungseigenschaften (2 ms Lebensdauer) im Vergleich zum 13,56-MHz-Prozess (0,5 ms Lebensdauer). Zuletzt wurde eine Analyse der Zusammenhänge zwischen Anregungsfrequenz, Plasmaleistung, Ionenenergie, Ioneneindringtiefe und Defektbildung in den intrinsischen Dünnschichtsiliziumschichten durchgeführt.:I. Abkürzungs- und Symbolverzeichnis vii
1 Einleitung 1
2 Physikalische und technologische Grundlagen 7
2.1 Plasmaunterstützte chemische Gasphasenabscheidung 7
2.1.1 Prozessparameter 9
2.1.2 Frequenzeinfluss 10
2.2 Amorphes und mikrokristallines Silizium 14
2.2.1 Eigenschaften von Dünnschichtsilizium 15
2.2.2 Siliziumbasierte Dünnschichtsolarzellen 20
2.2.3 Siliziumbasierte Solarzellen mit Heteroübergang 21
3 Entwicklung des Abscheidungsprozesses bis 140 MHz 23
3.1 Herstellung von dünnen Siliziumschichten 23
3.1.1 VHF-PECVD-Durchlaufanlage mit linearen Elektroden 24
3.1.2 F&E-Testanlage 25
3.2 Anpassung des Abscheidungssystems für sehr hohe Frequenzen 26
3.2.1 Temperaturregelung der HF Elektrode 26
3.2.2 Kompensation des Tiefpassverhaltens 28
3.2.3 Leistungseinkopplung 31
3.3 Homogenität der VHF-Abscheidung 32
3.4 Charakterisierung von dünnen Siliziumschichten und Solarzellen 34
3.4.1 Leitfähigkeitsmessung 34
3.4.2 Transmissionsmessungen im UV-VIS-NIR-Bereich 35
3.4.3 Fourier-Transform-Infrarotspektroskopie 37
3.4.4 Raman-Spektroskopie 38
3.4.5 Solarzellencharakterisierung 39
3.4.6 Messungen der effektiven Lebensdauer 42
3.5 Zusammenfassung der Ergebnisse 43
4 Hydrogeniertes amorphes Silizium im VHF-Bereich 45
4.1 Intrinsische a-Si:H Einzelschichten bis 140 MHz 45
4.1.1 Optische Eigenschaften 47
4.1.2 Strukturelle Eigenschaften 48
4.1.3 Elektrische Eigenschaften 51
4.2 a-Si:H-Solarzellen bis 140 MHz 52
4.2.1 Variation der Silankonzentration 53
4.2.2 Abscheiderateerhöhung durch Prozessleistung 56
4.3 Weitere Entwicklung der amorphen Silizium-Solarzellen 61
4.4 Zusammenfassung der Ergebnisse 62
5 Hydrogeniertes mikrokristallines Silizium im VHF-Bereich 65
5.1 μc-Si:H Schichten und Solarzellen – HPD-Regime 68
5.1.1 Einfluss des Prozessdruckes und der Silankonzentration bei hohen Gasflusswerten 69
5.1.2 Einfluss der Leistung bei hohen Gasflusswerten 72
5.2 μc-Si:H Schichten und Solarzellen – Frequenzerhöhung 74
5.2.1 μc-Si:H Schichteigenschaften – Vergleich 120 und 140 MHz 74
5.2.2 μc-Si:H Solarzellen – Vergleich 120 und 140 MHz 76
5.3 Weitere Entwicklung der μc-Si:H Solarzellen 78
5.4 Zusammenfassung der Ergebnisse 79
6 Passivierungsschichten für HIT-Solarzellen 81
6.1 Schichteigenschaften – Vergleich zwischen 13,56 und 140 MHz 81
6.2 H2-Plasma-Vorreinigung 84
6.3 Passivierungsschichten – Frequenzeinfluss 87
6.4 Zusammenfassung der Ergebnisse 88
7 Simulationsstudie 89
7.1 Ionenbeschussenergie 89
7.1.1 Modellübersicht – Ar-Plasma 90
7.1.2 Einfluss der Leistung und Betriebsfrequenz 91
7.2 Simulation des Ionenbeschusses 92
7.2.1 TRIM–Simulationssoftware 92
7.2.2 Ionenbeschuss auf die a-Si:H-Oberfläche 93
7.3 Solarzellen – Defekte in der i- Schicht 94
7.3.1 ASA–Simulationssoftware 95
7.3.2 Parameterset 99
7.3.3 Einfluss der Defektdichte auf Solarzelleneigenschaften 101
7.4 Zusammenfassung der Ergebnisse 102
8 Zusammenfassung und Ausblick 105
II. Abbildungsverzeichnis 111
III. Tabellenverzeichnis 117
IV. Literaturverzeichnis 119
V. Veröffentlichungen 129
VI. Lebenslauf 131
VII. Danksagung 133 / The following thesis deals with the main aspects of the high-rate deposition of amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon layers and solar cells. The very high frequency plasma enhanced chemical vapor deposition technique with excitation frequencies up to 140 MHz (VHF-PECVD) has been introduced. These study deals mainly with the adaptation of the deposition system for the VHF-range and the development of the highly productive manufacturing process without deterioration of the layer properties and the solar cell efficiency. An increase of the excitation frequency up to 140 MHz ensured a 70 % enhancement of the a-Si:H and μc-Si:H deposition rate. A further optimization of the solar cells shows the excellent suitability of these manufacturing process for the deposition of the highly efficient solar cells (about 10.7% for a-Si:H and 9.5% for μc-Si:H cells). The novel VHF-PECVD process has also been analyzed for the deposition of the passivation layers for the silicon heterojunction solar cells (HIT). Working in the VHF-range allows the use of very high deposition rates up to 1 nm/s, without deterioration of the passivation properties (2 ms lifetime) compared to the 13.56 MHz process (0.5 ms lifetime). Finally, an analysis of the correlations between excitation frequency, plasma power, ion energy, ion penetration depth and defect formation in the intrinsic thin film silicon layers was performed.:I. Abkürzungs- und Symbolverzeichnis vii
1 Einleitung 1
2 Physikalische und technologische Grundlagen 7
2.1 Plasmaunterstützte chemische Gasphasenabscheidung 7
2.1.1 Prozessparameter 9
2.1.2 Frequenzeinfluss 10
2.2 Amorphes und mikrokristallines Silizium 14
2.2.1 Eigenschaften von Dünnschichtsilizium 15
2.2.2 Siliziumbasierte Dünnschichtsolarzellen 20
2.2.3 Siliziumbasierte Solarzellen mit Heteroübergang 21
3 Entwicklung des Abscheidungsprozesses bis 140 MHz 23
3.1 Herstellung von dünnen Siliziumschichten 23
3.1.1 VHF-PECVD-Durchlaufanlage mit linearen Elektroden 24
3.1.2 F&E-Testanlage 25
3.2 Anpassung des Abscheidungssystems für sehr hohe Frequenzen 26
3.2.1 Temperaturregelung der HF Elektrode 26
3.2.2 Kompensation des Tiefpassverhaltens 28
3.2.3 Leistungseinkopplung 31
3.3 Homogenität der VHF-Abscheidung 32
3.4 Charakterisierung von dünnen Siliziumschichten und Solarzellen 34
3.4.1 Leitfähigkeitsmessung 34
3.4.2 Transmissionsmessungen im UV-VIS-NIR-Bereich 35
3.4.3 Fourier-Transform-Infrarotspektroskopie 37
3.4.4 Raman-Spektroskopie 38
3.4.5 Solarzellencharakterisierung 39
3.4.6 Messungen der effektiven Lebensdauer 42
3.5 Zusammenfassung der Ergebnisse 43
4 Hydrogeniertes amorphes Silizium im VHF-Bereich 45
4.1 Intrinsische a-Si:H Einzelschichten bis 140 MHz 45
4.1.1 Optische Eigenschaften 47
4.1.2 Strukturelle Eigenschaften 48
4.1.3 Elektrische Eigenschaften 51
4.2 a-Si:H-Solarzellen bis 140 MHz 52
4.2.1 Variation der Silankonzentration 53
4.2.2 Abscheiderateerhöhung durch Prozessleistung 56
4.3 Weitere Entwicklung der amorphen Silizium-Solarzellen 61
4.4 Zusammenfassung der Ergebnisse 62
5 Hydrogeniertes mikrokristallines Silizium im VHF-Bereich 65
5.1 μc-Si:H Schichten und Solarzellen – HPD-Regime 68
5.1.1 Einfluss des Prozessdruckes und der Silankonzentration bei hohen Gasflusswerten 69
5.1.2 Einfluss der Leistung bei hohen Gasflusswerten 72
5.2 μc-Si:H Schichten und Solarzellen – Frequenzerhöhung 74
5.2.1 μc-Si:H Schichteigenschaften – Vergleich 120 und 140 MHz 74
5.2.2 μc-Si:H Solarzellen – Vergleich 120 und 140 MHz 76
5.3 Weitere Entwicklung der μc-Si:H Solarzellen 78
5.4 Zusammenfassung der Ergebnisse 79
6 Passivierungsschichten für HIT-Solarzellen 81
6.1 Schichteigenschaften – Vergleich zwischen 13,56 und 140 MHz 81
6.2 H2-Plasma-Vorreinigung 84
6.3 Passivierungsschichten – Frequenzeinfluss 87
6.4 Zusammenfassung der Ergebnisse 88
7 Simulationsstudie 89
7.1 Ionenbeschussenergie 89
7.1.1 Modellübersicht – Ar-Plasma 90
7.1.2 Einfluss der Leistung und Betriebsfrequenz 91
7.2 Simulation des Ionenbeschusses 92
7.2.1 TRIM–Simulationssoftware 92
7.2.2 Ionenbeschuss auf die a-Si:H-Oberfläche 93
7.3 Solarzellen – Defekte in der i- Schicht 94
7.3.1 ASA–Simulationssoftware 95
7.3.2 Parameterset 99
7.3.3 Einfluss der Defektdichte auf Solarzelleneigenschaften 101
7.4 Zusammenfassung der Ergebnisse 102
8 Zusammenfassung und Ausblick 105
II. Abbildungsverzeichnis 111
III. Tabellenverzeichnis 117
IV. Literaturverzeichnis 119
V. Veröffentlichungen 129
VI. Lebenslauf 131
VII. Danksagung 133

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:72317
Date02 October 2020
CreatorsLeszczyńska, Barbara
ContributorsBartha, Johann Wolfgang, Schrader, Sigurd, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0035 seconds