Return to search

<b>Influence of Metal Speciation and Support Properties for Ammonia Oxidation and Other Automotive Exhaust Catalytic Applications</b>

<p dir="ltr">Metal speciation and structure can be influenced by the deposition method used during synthesis, interactions with the support, and by post-deposition treatments and reaction conditions experienced during its lifetime of carrying out a catalytic reaction. Supported metal particles of different size contain different surface structures and coordination environments, which may not only influence reaction rates but also the interconversion between agglomerated metallic domains and dispersed metal atom or ion sites. Here, we address the influence of post-deposition treatments and support properties on the structural interconversion of Pd and Cu on aluminosilicate chabazite (CHA) zeolites, Pt on gamma-alumina (γ-Al2O3), and Pd on amorphous oxides (γ-Al2O3, La-doped Al2O3, ΘΔ-Al2O3). The fundamental insights from these studies can be used to design catalysts used widely in automotive exhaust aftertreatment systems, including Pd-exchanged zeolites for passive NOx (x = 1,2) adsorbers (PNA), Cu-exchanged zeolites for NOx (x = 1,2) selective catalytic reduction (SCR), Pt/Al2O3 for NH3 oxidation, and Pd/oxides for three-way catalysts (TWC). Incipient wetness impregnation (IWI) and colloidal methods were used to prepare Pd nanoparticles deposited on CHA zeolites with distinct Pd nanoparticle sizes and distributions. These Pd-CHA samples were used to investigate the effects of Pd particle size distribution on structural interconversion between ion-exchanged Pd and agglomerated Pd domains under realistic operating conditions. Smaller Pd nanoparticles had larger fractions of agglomerated Pd that converted to ion-exchanged Pd2+ sites at fixed air treatment temperatures (598–973 K) and H2O pressures (2–6 kPa H2O), consistent with thermodynamic predictions from DFT calculations. Furthermore, the addition of H2O during air treatment of different Pd nanoparticles (2–14 nm) inhibited the formation of ion-exchanged Pd2+ (thermodynamics), but not the rate of redispersion (kinetics). This demonstrates that, regardless of Pd nanoparticle size, water vapor in automotive exhaust streams facilitate metal sintering in PNA applications. Aqueous-phase exchange of Cu on CHA zeolites with varying support properties (i.e., number of paired Al sites in the 6 membered ring) were used to prepare materials with distinct types and numbers of extraframework Cu species (Cu2+, CuOH+). These Cu-CHA materials were used to analyze Cu structural changes before and after exposure to hydrothermal aging conditions. In the absence of H2O, some Cu2+ sites condense to form binuclear Ox-bridged Cu species that can be reduced with H2 to form Cu-hydride sites and reject H2O, leading to a sub-stoichiometric H2 consumption (H2/Cu < 0.5). In the presence of H2O, all nominally isolated Cu2+ species convert to [CuOH]+ structures, which can subsequently be reduced by H2 to form a Cu-hydride and reject H2O, leading to stoichiometric H2 consumption (H2/Cu ~ 0.5). Furthermore, the presence of H2O led to reduction features in H2 temperature programmed reduction (TPR) profiles that were similar among Cu-CHA materials, regardless of the initial Cu2+ speciation, further supporting the proposal that all nominally isolated Cu2+ sites convert to a similar [CuOH]+ motif. This demonstrates how water influences Cu speciation on CHA materials of varying origin or treatment history, aiding in quantifying SCR-active isolated Cu ions and SCR-inactive Cu species (e.g., CuO, CuAl2O4). Pt supported on γ-Al2O3 were prepared with different average Pt particle sizes (2–13 nm) by increasing the temperature of post-deposition air treatment (523–873 K). This suite of materials was interrogated to isolate the effects of Pt particle size on NH3 oxidation rates and selectivities during conditions relevant to NH3 slip applications in diesel exhaust aftertreatment. For all Pt particle sizes, NH3 oxidation rates displayed a hysteresis with temperature, with high rates measured during temperature decreases than during temperature increases. Smaller Pt particles (2 nm) had lower rates (per surface Pt, quantified by CO chemisorption) than larger Pt particles (13 nm), signifying that NH3 oxidation is a structure-sensitive reaction. Furthermore, surfaces of Pt particles restructure under NH3 oxidation reaction conditions, influencing effective Pt oxidation states, surface structures (numbers and types of exposed Pt sites), and surface coverages of intermediates leading to the observed hysteresis in rate. These findings demonstrate that Pt particles undergo dynamic structural changes during reaction, influencing their ability to convert NH3 to environmentally benign products in NH3 slip applications. The influence of treatment conditions, support properties, and initial Pd particle size and distribution on the kinetics of nanoparticle sintering were investigated to identify which material properties allow maintaining high dispersion to maximize metal utilization for three way catalysts (TWC) during the conversion of regulated pollutants (CO, hydrocarbons, NOx). Pd was deposited by IWI methods to generate polydiserse particle size distributions, and using colloidal Pd nanoparticle solutions to generate monodisperse size distributions, onto various supports (γ-Al2O3, La-doped Al2O3, ΘΔ-Al2O3) and subjected to aging under oxidative and reductive conditions relevant for TWC operation. The average Pd particle size for all materials increased with treatment time under both reductive and oxidative environments. For samples prepared with IWI (i.e., log normal distribution of Pd particle sizes), reductive aging treatments led to higher sintering rates than oxidative treatments. In contrast, for samples prepared using colloidal Pd solutions (i.e., normal distribution of Pd particle sizes), oxidative aging treatments led to higher sintering rates than reduction treatments. Furthermore, after the same treatment condition and time, samples prepared with IWI resulted in higher average Pd particle sizes. These results indicate that more monodisperse initial Pd particle size distributions lead to lower sintering rates, providing guidance to design of supported metal TWCs with improved metal utilization during their lifetimes. Here, the combination of synthesis approaches to prepare a suite of model (e.g., powder) supported metal catalysts of varying structure and composition, interrogated using site and structural characterizations and steady-state and transient kinetic measurements, along with predictions from theoretical calculations, enabled unraveling the influence of material properties and gas environments that affect metal speciation, structure, and oxidation state in real-world aftertreatment systems that use more complex catalytic architectures (e.g., layered washcoats) and reactor designs (e.g., monoliths). This approach provides insights into the fundamental thermodynamic and kinetic factors influencing metal restructuring and interconversion under realistic conditions encountered in automotive exhaust aftertreatment applications, and the kinetic and mechanistic factors that underlie complex phenomena (e.g., reaction rate hysteresis) from data measured in the absence of hydrodynamic artifacts. The overall approach used in this work enabled development of synthesis-structure-function relationships on various metal supported catalysts for automotive exhaust aftertreatment applications, which can provide guidance for material design and treatment strategies to form and retain desired metal structures throughout the material lifetime, including synthesis, reaction, and regeneration treatments.</p>

  1. 10.25394/pgs.25357594.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/25357594
Date07 March 2024
CreatorsBrandon Kyle Bolton (18116749)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/_b_Influence_of_Metal_Speciation_and_Support_Properties_for_Ammonia_Oxidation_and_Other_Automotive_Exhaust_Catalytic_Applications_b_/25357594

Page generated in 0.0015 seconds