Return to search

Functional Analysis of the Vesicular Glutamate Transporter 2 in Specific Neuronal Circuits of the Brain

A key issue in neuroscience is to determine the connection between neuronal circuits and behaviour. In the adult brain, all neuronal circuits include a glutamatergic component. Three proteins designated Vesicular glutamate transporter 1-3 (VGLUT1-3) possess the capability of packaging glutamate into presynaptic vesicles for release of glutamate at the nerve terminal. The present study aimed at determining the role of VGLUT2 in neuronal circuits of higher brain function, emotion, and reward-pocessing. A conditional knockout (cKO) strategy was utilised, and three different mouse lines were produced to delete VGLUT2 in specific neuronal circuits in a temporally and spatially controlled manner. First, we produced a cKO mouse in which Vglut2 was deleted in specific subpopulations of the cortex, amygdala and hippocampus from preadolescence. This resulted in blunted aspects in cognitive, emotional and social behaviour in a schizophrenia-related phenotype. Furthermore, we showed a downstream effect of the targeted deletion on the dopaminergic system. In a subsequent analysis of the same cKO mice, we showed that female cKO mice were more affected their male counterparts, and we also found that female schizophrenia patients, but not male patients, had increased Vglut2 levels in the cortex.  Second, we produced and analysed cKO mice in which Vglut2 was deleted in the cortex, amygdala and hippocampus already from midgestation, and could show that this deletion affected emotional, but not cognitive, function. Third, we addressed the role of VGLUT2 in midbrain dopamine neurons by targeting Vglut2 specifically in these neurons. These cKO mice showed a blunted activational response to the psychostimulant amphetamine and increased operant self-administration of both sugar and cocaine reinforcers. Further, the cKO mice displayed strongly enhanced cocaine-seeking in response to cocaine-associated cues, a behaviour of relevance for addiction in humans. In summary, this thesis work has addressed the role of the presynaptic glutamatergic neuron in different neuronal circuits and shown that the temporal and spatial distribution of VGLUT2 is of great significance for normal brain function.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-170046
Date January 2012
CreatorsNordenankar, Karin
PublisherUppsala universitet, Institutionen för neurovetenskap, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 748

Page generated in 0.0018 seconds