Return to search

Lacunaridade para caracterização de formas de dimensão finita / Not available

A caracterização de objetos de dimensões finitas é uma das áreas de aplicação do processamento de imagens [2]. Esta caracterização contribui para o estudo de dinâmicas de crescimento por modelagem matemática e simulação computacional [3, 4, 5]. Existem medidas que inicialmente foram criadas para quantificar certas características de objetos auto-similares, como as formas fractais, que são muito utilizadas em estudos de física. Uma das medidas mais conhecidas é a dimensão fractal, que está associada a complexidade do objeto. A dimensão fractal tem sido utilizada em estudos de objetos como os gerados pelo modelo DLA (Diflusion-Limited-Aggregation) (6, 7), que é um modelo que gera formas por meio de agregação de partículas. Mesmo que poderosa, a dimensão fractal é uma medida degenerada, ou seja, objetos com geometrias distintas podem apresentar mesma dimensão fractal. Com o intuito de contornar esta característica e melhor caracterizar uma forma geométrica uma nova medida denominada lacunaridade foi sugerida por Mandelbrot [8], de tal forma que objetos com mesma dimensão fractal possuíssem lacunaridade distinta. A medida de lacunaridade está relacionada com a textura do objeto e informa o quanto o objeto desvia de ser invariante a translação [9, 10, 11]. Valores baixos de lacunaridade indicam maior invariância translacional, enquanto valores altos indicam o contrário, ou seja, um objeto mais heterogêneo. Existem vários modelos para o cálculo da lacunaridade [12, 13, 14, 9], contudo, ainda restam algumas arbitrariedades que dificultam a aplicação destes no estudo de objetos finitos [15]. O objetivo deste estudo é justamente adaptar a medida de lacunaridade a análise seqüencial de imagens de objetos com auto-similaridade restrita, como por exemplo, neurônios, de forma a remover as arbitrariedades características dos algoritmos convencionais / The shape characterization of objects is an application of image processing [2] which has been applied to the understand of natural phenomena as well as growth dynamics by mathematical modeling and computational simulation [3, 4, 5]. There are many kinds of measures that were designed to quantify auto-similar features, such as fractal forms, which are largely applied in physical studies. The fractal dimension is one of these measures associated to object complexity, used to investigate features of objects, for instance, generated by DLA (Diffusion-Limited-Aggregation) models [6, 7]. These models generate ramified structures by means of particle aggregation. Although powerful, the measure presents degeneracy, e.g., some distinct fractals may present the same fractal dimension. Intended to overlook this feature and better characterize geometrical forms, a new measure has been proposed by Mandelbrot, namely the lacunarity [8], in order to distinguish between objects whit same fractal dimensions. This measure is related to object texture and provides information about translational invariance [9, 10, 11]. Low values of lacunarity mean high translational invariance while high values mean the opposite situation, e.g., more heterogeneous objects. Although, there are severa1 ways to calculate lacunarity [12, 13, 14, 9], some arbitrary parameters remains which make it difficult to apply these methods to finite size objects analysis [15]. The present study intends to adapt the lacunarity measure to finite size objects in order to achieve translation an rotational invariance

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-27112014-165416
Date16 December 2004
CreatorsRodrigues, Erbe Pandini
ContributorsCosta, Luciano da Fontoura
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds