Return to search

Simulation and optimization of primary oil and gas processing plant of FPSO operating in pre-salt oil field. / Simulação e otimização de planta de processamento primário de óleo e gás de FPSO operando em campo de petróleo do pré-sal.

FPSO (Floating, Production, Storage e Offloading) plants, similarly to other oil and gas offshore processing plants, are known to be an energy-intensive process. Thus, any energy consumption and production optimization procedures can be applied to find optimum operating conditions of the unit, saving money and CO2 emissions from oil and gas processing companies. A primary processing plant of a typical FPSO operating in a Brazilian deep-water oil field on pre-salt areas is modeled and simulated using its real operating data. Three operation conditions of the oil field are presented in this research: (i) Maximum oil/gas content (mode 1), (ii) 50% BSW oil content (mode 2) and (iii) high water/CO2 in oil content (mode 3). In addition, an aero-derivative gas turbine (RB211G62 DLE 60Hz) with offshore application is considered for the heat and generation unit using the real performance data. The impact of eight thermodynamic input parameters on fuel consumption and hydrocarbon liquids recovery of the FPSO unit are investigated by the Smoothing Spline ANOVA (SS-ANOVA) method. From SS-ANOVA, the input parameters that presented the highest impact on fuel consumption and hydrocarbon liquids recovery were selected for an optimization procedure. The software Aspen HYSYS is used as the process simulator for the screening analysis process and for the optimization procedure, that consisted of a Hybrid Algorithm (NSGA-II +SQP method). The objective functions used in the optimization were the minimization of fuel consumption of the processing and utility plants and the maximization of hydrocarbon liquids recovery. From SS-ANOVA, the statistical analysis revealed that the most important parameters affecting the fuel consumption of the plant are: (1) output pressure of the first control valve (P1); (2) output pressure of the second stage of the separation train before mixing with dilution water (P2); (3) input pressure of the third stage of separation train (P3); (4) input pressure of dilution water (P4); (5) output pressure of the main gas compressor (Pc); (6) output petroleum temperature in the first heat exchanger (T1); (7) output petroleum temperature in the second heat exchanger (T2); (8) and dilution water temperature (T3). Four input parameters (P1, P2, P3 and Pc), three input parameters (P3, Pc and T2) and three input parameters (P3, Pc and T2) correspond to 96%, 97% and 97% of the total contribution to fuel consumption for modes 1, 2 and 3, respectively. For hydrocarbon liquids recovery of the plant: Four input parameters (P1,P2,P3 and T2), three input parameters (P3, P2 and T2) and three input parameters (P3, P2 and T2) correspond to 95%, 97% and 98% of the total contribution to hydrocarbon liquids recovery for modes 1, 2 and 3, respectively. The results from the optimized case indicated that the minimization of fuel consumption is achieved by increasing the operating pressure in the third stage of the separation train and by decreasing the operating temperature in the second stage of the separation train for all operation modes. There were a reduction in power demand of 6.4% for mode 1, 10% for mode 2 and 2.9% for mode 3, in comparison to the baseline case. Consequently, the fuel consumption of the plant was decreased by 4.46% for mode 1, 8.34% for mode 2 and 2.43% for mode 3 , when compared to the baseline case. Moreover, the optimization found an improvement in the recovery of the volatile components, in comparison with the baseline cases. Furthermore, the optimum operating condition found by the optimization procedure of hydrocarbon liquids recovery presented an increase of 4.36% for mode 1, 3.79% for mode 2 and 1.75% for mode 3 in hydrocarbon liquids recovery (stabilization and saving), when compared to a conventional operating condition of their baseline. / As plantas FPSO (Floating, Production, Storage e Offloading) , assim como outras plataformas de processamento offshore de petróleo e gás, são conhecidas por terem processos com uso intensivo de energia. Portanto, qualquer aplicação de procedimentos de otimização para consumo de energia e/ou produção pode ser útil para encontrar as melhores condições de operação da unidade, reduzindo custos e emissões de CO2 de empresas que atuam na área de petróleo e gás. Uma planta de processamento primário de uma plataforma FPSO típica, operando em um campo de petróleo em águas profundas brasileiras e em áreas do pré-sal, é modelada e simulada usando seus dados operacionais reais: (i) Teor máximo de óleo / gás (modo 1), (ii) 50 % de teor de BSW no óleo (modo 2) e (iii) teor elevado de água / CO2 no óleo (modo 3). Além disso, uma turbina a gás aeroderivativa (RB211G62 DLE 60Hz) para aplicação offshore é considerada para a unidade de geração da potência eletrica e calor, através dos seus dados reais de desempenho. O impacto de oito parâmetros termodinâmicos de entrada no consumo de combustível e na recuperação de hidrocarbonetos líquidos da unidade FPSO são investigados pelo método SS-ANOVA (Smoothing Spline ANOVA). A partir do SS-ANOVA, os parâmetros de entrada que apresentaram o maior impacto no consumo de combustível e na recuperação de hidrocarbonetos líquidos foram selecionados para aplicação em um procedimento de otimização. Os processos de análise da triagem (usando SS-ANOVA) e de otimização, que consiste em um Algoritmo Híbrido (método NSGA-II + SQP), utilizaram o software Aspen HYSYS como simulador de processo. As funções objetivo utilizadas na otimização foram: minimização do consumo de combustível das plantas de processamento e utilidade e a maximização da recuperação de hidrocarbonetos líquidos. Ainda utilizando SS-ANOVA, a análise estatística realizada revelou que os parâmetros mais importantes que afetam o consumo de combustível da planta são: (1) pressão de saída da primeira válvula de controle (P1); (2) pressão de saída do segundo estágio do trem de separação (e antes da mistura com água de diluição) (P2); (3) pressão de entrada do terceiro estágio do trem de separação (P3); (4) pressão de entrada da água de diluição (P4); (5) pressão de saída do compressor principal de gás (Pc); temperatura de saída de petróleo no primeiro trocador de calor (T1); (7) temperatura de saída de petróleo no segundo trocador de calor (T2); e (8) temperatura da água de diluição. Os parâmetros de entrada de P1, P2, P3 e Pc correspondem a 95% da contribuição total para a recuperação de hidrocarbonetos líquidos da planta para os modos 1. Analogamente, os três parâmetros de entrada P3, Pc e T2 correspondem a 97% e 98% do contribuição total para o consumo de combustível para os modos 2 e 3, respectivamente. Para a recuperação de hidrocarbonetos líquidos da plant, os parâmetros de entrada de P1, P2, P3 e T2 correspondem a 96% da contribuição total para o consumo de combustível para o modo 1. Da mesma forma, os três parâmetros de entrada P3, P2 e T2 correspondem a 97% e 97% da contribuição total para a recuperação de hidrocarbonetos líquidos para os modos 2 e 3, respectivamente. Os resultados do caso otimizado indicaram que a minimização do consumo de combustível é obtida aumentando a pressão de operação no terceiro estágio do trem de separação e diminuindo a temperatura de operação no segundo estágio do trem de separação para todos os modos de operação. Houve uma redução na demanda de potência de 6,4% para o modo 1, 10% para o modo 2 e 2,9% para o modo 3, em comparação com o caso base. Consequentemente, o consumo de combustível da planta foi reduzido em 4,46% para o modo 1, 8,34% para o modo 2 e 2,43% para o modo 3, quando comparado com o caso base. Além disso, o procedimento de otimização identificou uma melhora na recuperação dos componentes voláteis, em comparação com os casos baseline. A condição ótima de operação encontrada pelo procedimento para otimização da recuperação de hidrocarbonetos líquidos apresentou um aumento de 4,36% para o modo 1, 3,79% para o modo 2 e 1,75% para modo 3, na recuperação líquida de hidrocarbonetos líquidos (e estabilização), quando comparado com as condições operacionais convencionais das suas baseline.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-13122018-150547
Date11 September 2018
CreatorsBidgoli, Ali Allahyarzadeh
ContributorsYanagihara, Jurandir Itizo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsReter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.

Page generated in 0.0135 seconds