Return to search

Méthodes multivariées pour l'analyse jointe de données de neuroimagerie et de génétique

L'imagerie cérébrale connaît un intérêt grandissant, en tant que phénotype intermédiaire, dans la compréhension du chemin complexe qui relie les gènes à un phénotype comportemental ou clinique. Dans ce contexte, un premier objectif est de proposer des méthodes capables d'identifier la part de variabilité génétique qui explique une certaine part de la variabilité observée en neuroimagerie. Les approches univariées classiques ignorent les effets conjoints qui peuvent exister entre plusieurs gènes ou les covariations potentielles entre régions cérébrales.Notre première contribution a été de chercher à améliorer la sensibilité de l'approche univariée en tirant avantage de la nature multivariée des données génétiques, au niveau local. En effet, nous adaptons l'inférence au niveau du cluster en neuroimagerie à des données de polymorphismes d'un seul nucléotide (SNP), en cherchant des clusters 1D de SNPs adjacents associés à un même phénotype d'imagerie. Ensuite, nous prolongeons cette idée et combinons les clusters de voxels avec les clusters de SNPs, en utilisant un test simple au niveau du "cluster 4D", qui détecte conjointement des régions cérébrale et génomique fortement associées. Nous obtenons des résultats préliminaires prometteurs, tant sur données simulées que sur données réelles.Notre deuxième contribution a été d'utiliser des méthodes multivariées exploratoires pour améliorer la puissance de détection des études d'imagerie génétique, en modélisant la nature multivariée potentielle des associations, à plus longue échelle, tant du point de vue de l'imagerie que de la génétique. La régression Partial Least Squares et l'analyse canonique ont été récemment proposées pour l'analyse de données génétiques et transcriptomiques. Nous proposons ici de transposer cette idée à l'analyse de données de génétique et d'imagerie. De plus, nous étudions différentes stratégies de régularisation et de réduction de dimension, combinées avec la PLS ou l'analyse canonique, afin de faire face au phénomène de sur-apprentissage dû aux très grandes dimensions des données. Nous proposons une étude comparative de ces différentes stratégies, sur des données simulées et des données réelles d'IRM fonctionnelle et de SNPs. Le filtrage univarié semble nécessaire. Cependant, c'est la combinaison du filtrage univarié et de la PLS régularisée L1 qui permet de détecter une association généralisable et significative sur les données réelles, ce qui suggère que la découverte d'associations en imagerie génétique nécessite une approche multivariée.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00753829
Date28 September 2012
CreatorsLe Floch, Edith
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0013 seconds