Return to search

Analytic methods in combinatorial number theory

Thesis (MSc)--Stellenbosch University, 2015 / ENGLISH ABSTRACT : Two applications of analytic techniques to combinatorial problems with
number-theoretic flavours are shown. The first is an application of the
real saddle point method to derive second-order asymptotic expansions for
the number of solutions to the signum equation of a general class of sequences.
The second is an application of more elementary methods to yield asymptotic
expansions for the number of partitions of a large integer into powers of an
integer b where each part has bounded multiplicity. / AFRIKAANSE OPSOMMING : Ons toon twee toepassings van analitiese tegnieke op kombinatoriese probleme
met getalteoretiese geure. Die eerste is ’n toepassing van die reële saalpuntmetode
wat tweede-orde asimptotiese uitbreidings vir die aantal oplossings
van die ‘signum’ vergelyking vir ’n algemene klas van rye aflewer. Die tweede
is ’n toepassing van meer elementêre metodes wat asimptotiese uitbreidings
vir die aantal partisies van ’n groot heelgetal in magte van ’n heelgetal b,
waar elke deel ’n begrensde meervoudigheid het, aflewer

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/98017
Date12 1900
CreatorsBaker, Liam Bradwin
ContributorsWagner, Stephan, Stellenbosch University. Faculty of Science. Department Mathematical Sciences (Mathematics)
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageEnglish
TypeThesis
Formatviii, 61 pages : illustrations (some colour)
RightsStellenbosch University

Page generated in 0.0018 seconds