Return to search

Feasibility study for producing and using biogas in Chisinau, Moldova

More and more people live in cities, cities that both present opportunities, in terms of potential sustainable growth and challenges, for example regarding insufficient infrastructure and waste management. There are several examples on initiatives to make cities reach their sustainability potential; one is to turn municipal organic waste, MOW, and sewage sludge into biogas and use it to produce electricity and/or heat or to upgrade it to biomethane and use it as a fuel in for example public transport or feed it to a gas grid. This study has focused on the potential and feasibility of producing and using biogas/biomethane as well as the remains from the production process, called digestate, in Chisinau, the capital of Moldova. For the most feasible options an indication of the environmental improvement and economic performance was also estimated. The study included biogas produced from municipal organic waste, sewage sludge and methane collected at landfills. For the areas of use, electricity or heat produced from biogas was included as well as using biomethane in public transport or feeding it to the gas grid and to use the digestate as biofertilizer. Since multiple factors needs to be considered in order to adequately assess the potential and feasibility a multi-criteria approach was used for developing a framework based on an early assessment tool for biomethane solutions in the urban context. In summary it is indicated that there are good conditions for biogas production in Chisinau with biogas production from sewage sludge being included in the ongoing rehabilitation of the largest wastewater facility and methane collection from the largest landfill historically being part of the operations and planned (although not confirmed) to soon be part of these again. However, the largest potential is for municipal organic waste where the main impediments relates to financial issues and to some extent legislation that indirectly favour short term landfilling. When investigating the possible use of the digestate as biofertilizer the outlooks are considerably less promising than for the supply side. Despite the fact that the law explicitly allows the use of digestate (both from MOW and sewage sludge) the lack of knowledge within the farmer community result in a low or non-existent customer demand. Regarding the possible use of biogas/biomethane it was concluded that electricity production is the most feasible option and heat generation placing as the second most feasible. Feeding the gas to the grid appears more difficult and the least likely option is for the biogas to be used within public transport. Overall it is in general technically possible to use the gas in terms of infrastructure and there is some demand, especially for electricity and heat. The biggest inhibitory factors are rather institutional since biogas in general is overlooked or not prioritized in the strategies leading to a shortcoming in economical instruments or funds and to some extent in the legislation. This thesis is complemented by an executive summary with the same name, both in English and translated to Romanian.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-157694
Date January 2018
CreatorsAlander, Johanna, Nylin, Adam
PublisherLinköpings universitet, Industriell miljöteknik, Linköpings universitet, Industriell miljöteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds