Return to search

De l'usage de la sémantique dans la classification supervisée de textes : application au domaine médical / On the use of semantics in supervised text classification : application in the medical domain

Cette thèse porte sur l’impact de l’usage de la sémantique dans le processus de la classification supervisée de textes. Cet impact est évalué au travers d’une étude expérimentale sur des documents issus du domaine médical et en utilisant UMLS (Unified Medical Language System) en tant que ressource sémantique. Cette évaluation est faite selon quatre scénarii expérimentaux d’ajout de sémantique à plusieurs niveaux du processus de classification. Le premier scénario correspond à la conceptualisation où le texte est enrichi avant indexation par des concepts correspondant dans UMLS ; le deuxième et le troisième scénario concernent l’enrichissement des vecteurs représentant les textes après indexation dans un sac de concepts (BOC – bag of concepts) par des concepts similaires. Enfin le dernier scénario utilise la sémantique au niveau de la prédiction des classes, où les concepts ainsi que les relations entre eux, sont impliqués dans la prise de décision. Le premier scénario est testé en utilisant trois des méthodes de classification: Rocchio, NB et SVM. Les trois autres scénarii sont uniquement testés en utilisant Rocchio qui est le mieux à même d’accueillir les modifications nécessaires. Au travers de ces différentes expérimentations nous avons tout d’abord montré que des améliorations significatives pouvaient être obtenues avec la conceptualisation du texte avant l’indexation. Ensuite, à partir de représentations vectorielles conceptualisées, nous avons constaté des améliorations plus modérées avec d’une part l’enrichissement sémantique de cette représentation vectorielle après indexation, et d’autre part l’usage de mesures de similarité sémantique en prédiction. / The main interest of this research is the effect of using semantics in the process of supervised text classification. This effect is evaluated through an experimental study on documents related to the medical domain using the UMLS (Unified Medical Language System) as a semantic resource. This evaluation follows four scenarios involving semantics at different steps of the classification process: the first scenario incorporates the conceptualization step where text is enriched with corresponding concepts from UMLS; both the second and the third scenarios concern enriching vectors that represent text as Bag of Concepts (BOC) with similar concepts; the last scenario considers using semantics during class prediction, where concepts as well as the relations between them are involved in decision making. We test the first scenario using three popular classification techniques: Rocchio, NB and SVM. We choose Rocchio for the other scenarios for its extendibility with semantics. According to experiment, results demonstrated significant improvement in classification performance using conceptualization before indexing. Moderate improvements are reported using conceptualized text representation with semantic enrichment after indexing or with semantic text-to-text semantic similarity measures for prediction.

Identiferoai:union.ndltd.org:theses.fr/2013AIXM4343
Date12 December 2013
CreatorsAlbitar, Shereen
ContributorsAix-Marseille, Espinasse, Bernard, Fournier, Sébastien
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds