Spelling suggestions: "subject:"amedical domain"" "subject:"comedical domain""
1 |
Un système de question-réponse dans le domaine médical : le système Esculape / A question answering system in the medical domain : the Esculape systemEmbarek, Mehdi 04 July 2008 (has links)
Le domaine médical dispose aujourd'hui d'un très grand volume de documents électroniques permettant ainsi la recherche d’une information médicale quelconque. Cependant, l'exploitation de cette grande quantité de données rend la recherche d’une information précise complexe et coûteuse en termes de temps. Cette difficulté a motivé le développement de nouveaux outils de recherche adaptés, comme les systèmes de question-réponse. En effet, ce type de système permet à un utilisateur de poser une question en langage naturel et de retourner une réponse précise à sa requête au lieu d'un ensemble de documents jugés pertinents, comme c'est le cas des moteurs de recherche. Les questions soumises à un système de question-réponse portent généralement sur un type d’objet ou sur une relation entre objets. Dans le cas d’une question telle que « Qui a découvert l’Amérique ? » par exemple, l’objet de la question est une personne. Dans des domaines plus spécifiques, tel que le domaine médical, les types rencontrés sont eux-mêmes plus spécifiques. La question « Comment rechercher l'hématurie ? » appelle ainsi une réponse de type examen médical. L'objectif de ce travail est de mettre en place un système de question-réponse pour des médecins généralistes portant sur les bonnes pratiques médicales. Ce système permettra au médecin de consulter une base de connaissances lorsqu'il se trouve en consultation avec un patient. Ainsi, dans ce travail, nous présentons une stratégie de recherche adaptée au domaine médical. Plus précisément, nous exposerons une méthode pour l’analyse des questions médicales et l’approche adoptée pour trouver une réponse à une question posée. Cette approche consiste à rechercher en premier lieu une réponse dans une ontologie médicale construite à partir de essources sémantiques disponibles pour la spécialité. Si la réponse n’est pas trouvée, le système applique des patrons linguistiques appris automatiquement pour repérer la réponse recherchée dans une collection de documents candidats. L’intérêt de notre approche a été illustré au travers du système de question-réponse « Esculape » qui a fait l’objet d’une évaluation montrant que la prise en compte explicite de connaissances médicales permet d’améliorer les résultats des différents modules du processus de traitement / The medical domain has currently a very high volume of electronic documents facilitating the search of any medical information. However, the exploitation of this large quantity of data makes the search of specific information complex and time consuming. This difficulty has prompted the development of new adapted research tools, as question-answering systems. Indeed, this type of system allows a user to ask a question in natural language and send a specific answer to its request instead of a set of documents deemed pertinent, as is the case with search engines. The questions submitted to a question-answering system concern generally a type of object or a relationship between objects. In the case of a question such as “Who discovered America?” the object of question is a person. In more specific areas, such as the medical domain, the types are themselves more specific. The question “How to Search the hematuria?” waiting for an answer type medical examination. This dissertation studies the development of a question-answering system for physicians on good medical practices. This system will allow the doctor to consult a knowledge base when he is in consultation with a patient. Thus, we present an adapted research strategy to medical domain. Specifically, we will present a method for analyzing medical questions and the approach to find an answer to a submitted question. This approach consists to find an answer first in a medical ontology built from semantic resources available for the domain. If the answer is not found, the system applies linguistic patterns learned automatically to identify the answer in a collection of documents. The interest of our approach has been illustrated through the question answering system “Esculape” which has been the subject of an evaluation showing that the incorporation of explicit medical knowledge can improves the results of the different modules of the treatment processes
|
2 |
Developing a taxonomy of health care aide tasks in a personal care homeZinnick, Shauna Gerry 16 September 2016 (has links)
Purpose: to understand the tasks that health care aides (HCAs) are responsible for in a nursing home setting, and to understand which of these tasks HCAs feel are more important.
Methods: In Phase 1, focus groups were conducted to validate the list of tasks and ensure HCAs could differentiate between them, according to task urgency, quality of care, and quality of life. During Phase 2, HCAs participated in a Delphi process to reach consensus on the relative importance of these tasks.
Results: Participants reached consensus that 12 of 31 tasks were highly important according to task urgency. Of these, 10 were from the medical domain (e.g., skin care). Similar results were reached for the other definitions of importance.
Conclusions: This study provides a framework for classifying HCA tasks into three domains (medical, social and indirect). Irrespective of the definition of importance used, medical tasks are consistently deemed as more important. / October 2016
|
3 |
Recherche de réponses précises à des questions médicales : le système de questions-réponses MEANS / Finding precise answers to medical questions : the question-answering system MEANSBen Abacha, Asma 28 June 2012 (has links)
La recherche de réponses précises à des questions formulées en langue naturelle renouvelle le champ de la recherche d’information. De nombreux travaux ont eu lieu sur la recherche de réponses à des questions factuelles en domaine ouvert. Moins de travaux ont porté sur la recherche de réponses en domaine de spécialité, en particulier dans le domaine médical ou biomédical. Plusieurs conditions différentes sont rencontrées en domaine de spécialité comme les lexiques et terminologies spécialisés, les types particuliers de questions, entités et relations du domaine ou les caractéristiques des documents ciblés. Dans une première partie, nous étudions les méthodes permettant d’analyser sémantiquement les questions posées par l’utilisateur ainsi que les textes utilisés pour trouver les réponses. Pour ce faire nous utilisons des méthodes hybrides pour deux tâches principales : (i) la reconnaissance des entités médicales et (ii) l’extraction de relations sémantiques. Ces méthodes combinent des règles et patrons construits manuellement, des connaissances du domaine et des techniques d’apprentissage statistique utilisant différents classifieurs. Ces méthodes hybrides, expérimentées sur différents corpus, permettent de pallier les inconvénients des deux types de méthodes d’extraction d’information, à savoir le manque de couverture potentiel des méthodes à base de règles et la dépendance aux données annotées des méthodes statistiques. Dans une seconde partie, nous étudions l’apport des technologies du web sémantique pour la portabilité et l’expressivité des systèmes de questions-réponses. Dans le cadre de notre approche, nous exploitons les technologies du web sémantique pour annoter les informations extraites en premier lieu et pour interroger sémantiquement ces annotations en second lieu. Enfin, nous présentons notre système de questions-réponses, appelé MEANS, qui utilise à la fois des techniques de TAL, des connaissances du domaine et les technologies du web sémantique pour répondre automatiquement aux questions médicales. / With the dramatic growth of digital information, finding precise answers to natural language questions is more and more essential for retrieving domain knowledge in real time. Many research works tackled answer retrieval for factual questions in open domain. Less works were performed for domain-specific question answering such as the medical domain. Compared to the open domain, several different conditions are met in the medical domain such as specialized vocabularies, specific types of questions, different kinds of domain entities and relations. Document characteristics are also a matter of importance, as, for example, clinical texts may tend to use a lot of technical abbreviations while forum pages may use long “approximate” terms. We focus on finding precise answers to natural language questions in the medical field. A key process for this task is to analyze the questions and the source documents semantically and to use standard formalisms to represent the obtained annotations. We propose a medical question-answering approach based on: (i) NLP methods combing domain knowledge, rule-based methods and statistical ones to extract relevant information from questions and documents and (ii) Semantic Web technologies to represent and interrogate the extracted information.
|
4 |
Explainable Antibiotics Prescriptions in NLP with Transformer ModelsContreras Zaragoza, Omar Emilio January 2021 (has links)
The overprescription of antibiotics has resulted in bacteria resistance, which is considered a global threat to global health. Deciding if antibiotics should be prescribed or not from individual visits of patients’ medical records in Swedish can be considered a text classification task, one of the applications of Natural Language Processing (NLP). However, medical experts and patients can not trust a model if explanations for its decision are not provided. In this work, multilingual and monolingual Transformer models are evaluated for the medical classification task. Furthermore, local explanations are obtained with SHapley Additive exPlanations and Integrated Gradients to compare the models’ predictions and evaluate the explainability methods. Finally, the local explanations are also aggregated to obtain global explanations and understand the features that contributed the most to the prediction of each class. / Felaktig utskrivning av antibiotika har resulterat i ökad antibiotikaresistens, vilket anses vara ett globalt hot mot global hälsa. Att avgöra om antibiotika ska ordineras eller inte från patientjournaler på svenska kan betraktas som ett textklassificeringproblem, en av tillämpningarna av Natural Language Processing (NLP). Men medicinska experter och patienter kan inte lita på en modell om förklaringar till modellens beslut inte ges. I detta arbete utvärderades flerspråkiga och enspråkiga Transformersmodeller för medisinska textklassificeringproblemet. Dessutom erhölls lokala förklaringar med SHapley Additive exPlanations och Integrated gradients för att jämföra modellernas förutsägelser och utvärdera metodernas förklarbarhet. Slutligen aggregerades de lokala förklaringarna för att få globala förklaringar och förstå de ord som bidrog mest till modellens förutsägelse för varje klass.
|
5 |
De l'usage de la sémantique dans la classification supervisée de textes : application au domaine médical / On the use of semantics in supervised text classification : application in the medical domainAlbitar, Shereen 12 December 2013 (has links)
Cette thèse porte sur l’impact de l’usage de la sémantique dans le processus de la classification supervisée de textes. Cet impact est évalué au travers d’une étude expérimentale sur des documents issus du domaine médical et en utilisant UMLS (Unified Medical Language System) en tant que ressource sémantique. Cette évaluation est faite selon quatre scénarii expérimentaux d’ajout de sémantique à plusieurs niveaux du processus de classification. Le premier scénario correspond à la conceptualisation où le texte est enrichi avant indexation par des concepts correspondant dans UMLS ; le deuxième et le troisième scénario concernent l’enrichissement des vecteurs représentant les textes après indexation dans un sac de concepts (BOC – bag of concepts) par des concepts similaires. Enfin le dernier scénario utilise la sémantique au niveau de la prédiction des classes, où les concepts ainsi que les relations entre eux, sont impliqués dans la prise de décision. Le premier scénario est testé en utilisant trois des méthodes de classification: Rocchio, NB et SVM. Les trois autres scénarii sont uniquement testés en utilisant Rocchio qui est le mieux à même d’accueillir les modifications nécessaires. Au travers de ces différentes expérimentations nous avons tout d’abord montré que des améliorations significatives pouvaient être obtenues avec la conceptualisation du texte avant l’indexation. Ensuite, à partir de représentations vectorielles conceptualisées, nous avons constaté des améliorations plus modérées avec d’une part l’enrichissement sémantique de cette représentation vectorielle après indexation, et d’autre part l’usage de mesures de similarité sémantique en prédiction. / The main interest of this research is the effect of using semantics in the process of supervised text classification. This effect is evaluated through an experimental study on documents related to the medical domain using the UMLS (Unified Medical Language System) as a semantic resource. This evaluation follows four scenarios involving semantics at different steps of the classification process: the first scenario incorporates the conceptualization step where text is enriched with corresponding concepts from UMLS; both the second and the third scenarios concern enriching vectors that represent text as Bag of Concepts (BOC) with similar concepts; the last scenario considers using semantics during class prediction, where concepts as well as the relations between them are involved in decision making. We test the first scenario using three popular classification techniques: Rocchio, NB and SVM. We choose Rocchio for the other scenarios for its extendibility with semantics. According to experiment, results demonstrated significant improvement in classification performance using conceptualization before indexing. Moderate improvements are reported using conceptualized text representation with semantic enrichment after indexing or with semantic text-to-text semantic similarity measures for prediction.
|
Page generated in 0.0399 seconds