Return to search

Deep Contrastive Metric Learning to Detect Polymicrogyria in Pediatric Brain MRI

Polymicrogyria (PMG) is one brain disease that mainly occurs in the pediatric brain. Heavy PMG will cause seizures, delayed development, and a series of problems. For this reason, it is critical to effectively identify PMG and start early treatment. Radiologists typically identify PMG through magnetic resonance imaging scans. In this study, we create and open a pediatric MRI dataset (named PPMR dataset) including PMG and controls from the Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada. The difference between PMG MRIs and control MRIs is subtle and the true distribution of the features of the disease is unknown. Hence, we propose a novel center-based deep contrastive metric learning loss function (named cDCM Loss) to deal with this difficult problem. Cross-entropy-based loss functions do not lead to models with good generalization on small and imbalanced dataset with partially known distributions. We conduct exhaustive experiments on a modified CIFAR-10 dataset to demonstrate the efficacy of our proposed loss function compared to cross-entropy-based loss functions and the state-of-the-art Deep SAD loss function. Additionally, based on our proposed loss function, we customize a deep learning model structure that integrates dilated convolution, squeeze-and-excitation blocks and feature fusion for our PPMR dataset, to achieve 92.01% recall. Since our suggested method is a computer-aided tool to assist radiologists in selecting potential PMG MRIs, 55.04% precision is acceptable. To our best knowledge, this research is the first to apply machine learning techniques to identify PMG only from MRI and our innovative method achieves better results than baseline methods.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/44312
Date28 November 2022
CreatorsZhang, Lingfeng
ContributorsLang, Jochen
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf, application/zip, application/zip
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.002 seconds