Return to search

A Graph Attention plus Reinforcement Learning Method for Antenna Tilt Optimization

Remote Electrical Tilt optimization is an effective method to obtain the optimal Key Performance Indicators (KPIs) by remotely controlling the base station antenna’s vertical tilt. To improve the KPIs aims to improve antennas’ cooperation effect since KPIs measure the quality of cooperation between the antenna to be optimized and its neighbor antennas. Reinforcement Learning (RL) is an appropriate method to learn an antenna tilt control policy since the agent in RL can generate the optimal epsilon greedy tilt optimization policy by observing the environment and learning from the state- action pairs. However, existing models only produced tilt modification strategies by interpreting the to- be- optimized antenna’s features, which cannot fully characterize the mobile cellular network formed by the to- be- optimized antenna and its neighbors. Therefore, incorporating the features of the neighboring antennas into the model is an important measure to improve the optimization strategy. This work will introduce the Graph Attention Network to model the neighborhood antenna’s impact on the antenna to be optimized through the attention mechanism. Furthermore, it will generate a low- dimensional embedding vector with more expressive power to represent the to- be- optimized antenna’s state in the RL framework through dealing with graph- structural data. This new model, namely Graph Attention Q- Network (GAQ), is a model based on DQN and aims to acquire a higher performance than the Deep Q- Network (DQN) model, which is the baseline, evaluated by the same metric — KPI Improvement. Since GAQ has a richer perception of the environment than the vanilla DQN model, it thereby outperforms the DQN model, obtaining fourteen percent performance improvement compared to the baseline. Besides, GAQ also performs 14 per cent better than DQN in terms of convergence efficiency. / Optimering av fjärrlutning är en effektiv metod för att nå optimala nyckeltal genom fjärrstyrning av den vertikala lutningen av en antenn i en basstation. Att förbättra nyckeltalen innebär att förbättra sammarbetseffekten mellan antenner eftersom nyckeltalen är mått på kvalitén av sammarbetet mellan den antenn som optimeras och dess angränsande antenner. Förstärkande Inlärning (FI) är en lämplig metod för att lära sig en optimal strategi för reglering av antennlutningen eftersom agenten inom FI kan generera den optimala epsilongiriga optimeringsstrategin genom att observera miljön och lära sig från par av tillstånd och aktioner. Nuvarande modeller genererar dock endast lutningsstrategier genom att tolka egenskaperna hos den antenn som ska optimeras, vilket inte är tillräckligt för att karatärisera mobilnätverket bestående av antennen som ska optimeras samt dess angränsande antenner. Därav är inkluderingen av de angränsande antennernas egenskaper i modellen viktig för att förbättra optimeringsstrategin. Detta arbete introducerar Graf- Uppmärksammat Nätverk för att modellera de angränsande antennernas påverkan på den antenn som ska optimeras genom uppmärksamhetsmekanismen. Metoden genererar en lågdimensionell vektor med större förmåga att representera den optimerade antennens tillstånd i FI modellen genom att hantera data i struktur av en graf. Den nya modellen, Graf- Uppmärksammat Q- Nätverk (GUQ), är en modell baserad på DQN med mål att nå bättre prestanda än en standard DQN- modell, utvärderat efter samma mätvärde –– förbättring av nyckeltalen. Eftersom GUQ har en större upfattning av miljön så överträffar metoden DQN- modellen genom en fjorton procent bättre prestandaökning. Dessutom, så överträffar GUQ även DQN i form av snabbare konvergens.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-300111
Date January 2021
CreatorsMa, Tengfei
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:292

Page generated in 0.0028 seconds