Return to search

Synthesis of DNA-Directed Pyrrolidinyl and Piperidinyl Confined Alkylating Chloroalkylaminoanthraquinones: Potential for Development of Tumor-Selective N-Oxides

No / A novel series of 1,4-disubstituted chloroethylaminoanthraquinones, containing alkylating chloroethylamino functionalities as part of a rigid piperidinyl or pyrrolidinyl ring-system, have been prepared. The target compounds were prepared by ipso-displacement of halides of various anthraquinone chromophores by either hydroxylated or chlorinated piperidinyl- or pyrrolidinyl-alkylamino side chains. The chloroethylaminoanthraquinones were shown to alkylate guanine residues of linearized pBR322 (1¿20 ¿M), and two symmetrically 1,4-disubstituted anthraquinones (compounds 14 and 15) were shown to interstrand cross-link DNA in the low nM range. Several 1,4-disubstituted chloroethylaminoanthraquinones were potently cytotoxic (IC50 values: ¿40 nM) in human ovarian cancer A2780 cells. Two agents (compounds 18 and 19) exhibited mean GI50 values of 96 nM and 182 nM, respectively, in the NCI human tumor cell line panel. Derivatization of the potent DNA cross-linking agent 15 to an N-oxide resulted in loss of the DNA unwinding, DNA interstrand cross-linking and cytotoxic activity of the parent molecule.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/3060
Date January 2006
CreatorsPatterson, Laurence H., Pors, Klaus, Shnyder, Steven, Teesdale-Spittle, P.H., Hartley, J.A., Searcey, M., Zloh, M.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, No full-text in the repository

Page generated in 0.0024 seconds