Return to search

Speaker recognition by voice / Asmens atpažinimas pagal balsą

Questions of speaker’s recognition by voice are investigated in this dissertation. Speaker recognition systems, their evolution, problems of recognition, systems of features, questions of speaker modeling and matching used in text-independent and text-dependent speaker recognition are considered too.
The text-independent speaker recognition system has been developed during this work. The Gaussian mixture model approach was used for speaker modeling and pattern matching.
The automatic method for voice activity detection was proposed. This method is fast and does not require any additional actions from the user, such as indicating patterns of the speech signal and noise.
The system of the features was proposed. This system consists of parameters of excitation source (glottal) and parameters of the vocal tract. The fundamental frequency was taken as an excitation source parameter and four formants with three antiformants were taken as parameters of the vocal tract. In order to equate dispersions of the formants and antiformants we propose to use them in mel-frequency scale. The standard mel-frequency cepstral coefficients (MFCC) for comparison of the results were implemented in the recognition system too. These features make baseline in speech and speaker recognition. The experiments of speaker recognition have shown that our proposed system of features outperformed standard mel-frequency cepstral coefficients. The equal error rate (EER) was equal to 5.17% using proposed... [to full text] / Disertacijoje nagrinėjami kalbančiojo atpažinimo pagal balsą klausimai. Aptartos kalbančiojo atpažinimo sistemos, jų raida, atpažinimo problemos, požymių sistemos įvairovė bei kalbančiojo modeliavimo ir požymių palyginimo metodai, naudojami nuo ištarto teksto nepriklausomame bei priklausomame kalbančiojo atpažinime.
Darbo metu sukurta nuo ištarto teksto nepriklausanti kalbančiojo atpažinimo sistema. Kalbėtojų modelių kūrimui ir požymių palyginimui buvo panaudoti Gauso mišinių modeliai.
Pasiūlytas automatinis vokalizuotų garsų išrinkimo (segmentavimo) metodas. Šis metodas yra greitai veikiantis ir nereikalaujantis iš vartotojo jokių papildomų veiksmų, tokių kaip kalbos signalo ir triukšmo pavyzdžių nurodymas.
Pasiūlyta požymių vektorių sistema, susidedanti iš žadinimo signalo bei balso trakto parametrų. Kaip žadinimo signalo parametras, panaudotas žadinimo signalo pagrindinis dažnis, kaip balso trakto parametrai, panaudotos keturios formantės bei trys antiformantės. Siekiant suvienodinti žemesnių bei aukštesnių formančių ir antiformančių dispersijas, jas pasiūlėme skaičiuoti melų skalėje. Rezultatų palyginimui sistemoje buvo realizuoti standartiniai požymiai, naudojami kalbos bei asmens atpažinime – melų skalės kepstro koeficientai (MSKK). Atlikti kalbančiojo atpažinimo eksperimentai parodė, kad panaudojus pasiūlytą požymių sistemą buvo gauti geresni atpažinimo rezultatai, nei panaudojus standartinius požymius (MSKK). Gautas lygių klaidų lygis, panaudojant pasiūlytą požymių... [toliau žr. visą tekstą]

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2009~D_20090615_093847-20773
Date15 June 2009
CreatorsKamarauskas, Juozas
ContributorsLipeika, Antanas, Dzemyda, Gintautas, Navakauskas, Dalius, Rudžionis, Algimantas, Bastys, Algirdas, Baušys, Romualdas, Telksnys, Laimutis, Šeinauskas, Rimantas, Vilnius Gediminas Technical University
PublisherLithuanian Academic Libraries Network (LABT), Vilnius Gediminas Technical University
Source SetsLithuanian ETD submission system
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis
Formatapplication/pdf
Sourcehttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20090615_093847-20773
RightsUnrestricted

Page generated in 0.0023 seconds