Return to search

Investigating a Supervised Learning and IMU Fusion Approach for Enhancing Bluetooth Anchors / Att förbättra Bluetooth-ankare med hjälp av övervakad inlärning och IMU

Modern indoor positioning systems encounter challenges inherent to indoor environments. Signal changes can stem from various factors like object movement, signal propagation, or obstructed line of sight. This thesis explores a supervised machine learning approach that integrates Bluetooth Low Energy (BLE) and inertial sensor data to achieve consistent angle and distance estimations. The method relies on BLE angle estimations and signal strength alongside additional sensor data from an Inertial Measurement Unit (IMU). Relevant features are extracted and a supervised learning model is trained and then validated on familiar environment tests. The model is then gradually introduced to more unfamiliar test environments, and its performance is evaluated and compared accordingly. This thesis project was conducted at the u-blox office and presents a comprehensive methodology utilizing their existing hardware. Several extensive experiments were conducted, refining both data collection procedures and experimental setups. This iterative approach facilitated the improvement of the supervised learning model, resulting in a proposed model architecture based on transformers and convolutional layers. The provided methodology encompasses the entire process, from data collection to the evaluation of the proposed supervised learning model, enabling direct comparisons with existing angle estimation solutions employed at u-blox. The results of these comparisons demonstrate more accurate outcomes compared to existing solutions when validated in familiar environments. However, performance gradually declines when introduced to a new environment, encountering a wider range of signal conditions than the supervised model had trained on. Distance estimations are then compared with the path loss propagation equation, showing an overall improvement. / Moderna inomhuspositioneringssystem möter utmaningar som förekommer i inomhusmiljöer. Signalförändringar kan bero på olika faktorer som objektets rörelse, signalutbredning eller blockerad siktlinje. Denna kandidat avhandling undersöker ett övervakat maskininlärningssätt som integrerar Bluetooth Low Energy (BLE) och tröghetssensorer för att uppnå konsekventa vinkel- och avståndsberäkningar. Metoden bygger på BLE-vinkelberäkningar och signalstyrka tillsammans med ytterligare sensordata från en Inertial Measurment Unit (IMU). Relevanta funktioner extraheras och en övervakad inlärningsmodell tränas och valideras sedan på tester i bekanta miljöer. Modellen introduceras sedan gradvis till mer obekanta testmiljöer, och dess prestanda utvärderas och jämförs därefter. Detta examensarbete genomfördes på u-blox kontor och presenterar en omfattande metodik som utnyttjar deras befintliga hårdvara. Flera omfattande experiment genomfördes, vilket förfinade både datainsamlingsprocedurer och experimentuppsättningar. Detta iterativa tillvägagångssätt underlättade förbättringen av den övervakade inlärningsmodellen, vilket resulterade i en föreslagen modellarkitektur baserad på transformatorer och konvolutionella lager. Den tillhandahållna metodiken omfattar hela processen, från datainsamling till utvärdering av den föreslagna övervakade inlärningsmodellen, vilket möjliggör direkta jämförelser med befintliga vinkelberäkningslösningar som används på u-blox. Resultaten av dessa jämförelser visar mer exakta resultat jämfört med befintliga lösningar när de valideras i bekanta miljöer. Dock minskar prestandan gradvis när den introduceras till en ny miljö, där den möter ett bredare spektrum av signalförhållanden än vad inlärningsmodellen har tränats på. Avståndsberäkningar jämförs sedan med en matematisk formel, kallat path loss propagation ekvationen, som ger distans som en funktion av uppmätt signalstyrka.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mau-69310
Date January 2024
CreatorsMahrous, Wael, Joseph, Adam
PublisherMalmö universitet, Fakulteten för teknik och samhälle (TS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds