Les maladies cardiovasculaires sont une des principales causes de décès dans le monde. L'athérosclérose est une maladie évolutive cardiovasculaire par laquelle les artères s'obstruent partiellement ou totalement. L'angioplastie est une technique cliniquement validée pour traiter l’athérosclérose bien que, le taux de resténose élevé soit un facteur limitant. L’implantation d’endoprothèses coronariennes (stents) lors de l’angioplastie a permis une diminution de 15 à 30% du taux de resténose, mais le risque reste encore relativement élevé. De plus, la corrosion des stents métalliques et la libération d’éléments potentiellement toxiques sont d’autres problèmes liés à leur application dans l’organisme. L’utilisation d’une couche polymérique à la surface des stents métalliques présente une voie intéressante pour prévenir le stent de la corrosion et diminuer le taux de resténose. Dans le cadre de ce mémoire, deux différents types de revêtements polymériques seront présentés. Tout d’abord, cette étude a porté sur les couches minces fluorocarbonées (CFx) déposées par plasma froid sur la surface en acier inoxydable. Ce recouvrement pourrait être chimiquement inerte, hydrophobe et biocompatible. Grâce à la méthode de dépôt par plasma froid associée à la modulation de la composition chimique et de la morphologie de l’interface, cette couche mince fluorocarbonée présente une bonne adhérence interfaciale (polymère-métal). Cependant des études de vieillissement effectuées sur ces échantillons ont montré une dégradation chimique et morphologique du revêtement et une oxydation du substrat après seulement 2 semaines de vieillissement dans l’eau déionisée. Afin de pallier ce problème, l’effet du post-traitement a été étudié. Dans, le chapitre II l’influence de ces traitements sur la composition chimique, la structure morphologie et la résistance au vieillissement sera présentée. La deuxième partie de ces travaux porte sur l’étude des recouvrements en copolymère dextrane-graft-polybutylméthacrylate (dextane-graft-PBMA). Le dextrane est un polysaccharide avec des propriétés biologiques intéressantes. Les dérivés du dextrane stimulent la prolifération des cellules endothéliales et inhibent celle des cellules musculaires lisses ainsi que la coagulation sanguine. L’utilisation des dérivés du dextrane en tant que recouvrement des stents métalliques permettrait de diminuer le taux de resténose et d’améliorer leur hémocompatibilité à long terme. Le dextrane a une très grande solubilité en milieu aqueux et ne peut donc pas former directement des films stables. De plus, il présente de très faibles propriétés mécaniques. La copolymérisation du dextrane avec un polymère synthétique hydrophobe est une voie intéressante afin de former un recouvrement plus stable en milieu aqueux et conférer des propriétés mécaniques plus importantes. Dans cette optique, la synthèse du copolymère dextrane-graft-PBMA peut s’avérer intéressante. Cette approche permettrait de combiner les propriétés biologiques du dextrane et les propriétés mécaniques du poly (butylméthacrylate). Le projet est partagé entre le Laboratoire de Bio-ingénierie de Polymères Cardiovasculaires (LBPC) à l’université Paris 13 et le Laboratoire de Biomatériaux et de Bioingénierie (LBB) à Québec. Des échantillons modèles d’acier inoxydable 316L ont été préparés au LBB, recouverts au LBPC et caractérisés au LBB au niveau de la composition chimique, de la structure morphologique et des propriétés mécaniques des recouvrements de dextrane-graft-PBMA. / Cardiovascular diseases are a major cause of death in the world. Atherosclerosis is a progressive disease in which the arteries partially or completely clog. Angioplasty is a clinically validated technique for treatment of atherosclerosis; however, a high restenosis rate remains the limiting factor for angioplasty. The implantation of a stent during angioplasty reduces the rate of restenosis between 15-30%, but the risk of restenosis remains relatively high. Moreover, corrosion and the release of potentially toxic elements are further drawbacks associated with metallic stents. The use of a polymer coating on the metallic stent surfaces can prevent stent corrosion and reduce the restenosis rate. In this study two different types of polymeric stent coatings will be presented. The first part of this research deals with the thin fluorocarbon (CFx) polymeric film deposited by cold plasma on the surface of stainless steel. This coating is assumed to be chemically inert, hydrophobic, and bio-compatible. Use of cold plasma deposition method modulates chemical composition and changes the morphology of the interface in the way that the polymeric film shows a good interfacial adhesion (polymer-metal). However, the aging studies performed on the samples submerged in deionised water show evidence of morphological and chemical degradation of the coating besides demonstrating the substrate oxidation, after only two weeks. To overcome this problem, the influence of a post-treatment was studied. In chapter II, The influence of these treatments on the chemical composition, morphological structure and resistance to aging will be presented. The second part of this research involves the study of dextran-graf-polybutylmethacrylate (dextran-graft-PBMA); dextran is a polysaccharide with interesting biological properties. The dextran derivatives stimulate the proliferation of endothelial cells and inhibit the smooth muscle cells proliferation and blood clotting. It was assumed that the dextran derivative coatings may decrease the rate of restenosis and improve long-term hemocompatibility of the stents. Unfortunately, dextran is highly soluble in aqueous media, therefore cannot directly form a stable film. Furthermore, dextran has poor mechanical properties. A solution to form a more stable coating in aqueous media, while improving its mechanical properties, is the copolymerization of dextran with a synthetic hydrophobic polymer. In this context, the synthesis of copolymer dextran-graf-polybutylmethacrylate seemed to offer a promising alternative. The synthesis of copolymer dextran-graf-polybutylmethacrylate that combines the biological properties of dextran and mechanical properties of poly(butylmethacrylate), might be a potential solution. The project is shared between Laboratoire de Bio-ingénierie de Polymères Cardiovasculaires (LBPC) at Paris 13 University and Laboratoire de Biomatériaux et de Bioingénierie (LBB) in Quebec City. Model samples of 316L stainless steel are prepared at LBB and covered in LBPC and characterized at LBB for the analysis of chemical composition, morphological structure, and mechanical properties of dextan-graft-PBMA coatings.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/23661 |
Date | 18 April 2018 |
Creators | Fakhari Tehrani, Soudeh |
Contributors | Mantovani, D. |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 122 p., application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.002 seconds