Return to search

Quantitative assessment of synaptic plasticity at the molecular scale with multimodal microscopy and computational tools

L'apprentissage et la mémoire aux niveaux cellulaire et moléculaire se caractérisent par la modulation de la force synaptique en recrutant et relocalisant des protéines synaptiques à l'échelle nanométrique. La plupart des études portant sur les mécanismes de la plasticité synaptique se sont concentrées sur des synapses spécifiques, manquant ainsi d'une vue d'ensemble de la diversité des changements de force synaptique et de la réorganisation des protéines dans les circuits neuronaux. Nous utilisons une combinaison d'imagerie fonctionnelle et à super résolution dans des cultures dissociées d'hippocampe et des outils d'intelligence artificielle pour classifier la diversité de synapses en fonction de leurs caractéristiques fonctionnelles et organisationnelles. Nous avons mesuré l'activité synaptique en utilisant la microscopie à grand champ pour enregistrer des événements calciques dans des neurones exprimant le senseur calcique fluorescent GCaMP6f. Nous avons développé une approche d'apprentissage profond pour détecter et segmenter ces événements calciques. Nous montrons la modulation de l'amplitude et de la fréquence des événements calciques en fonction de l'activité neuronale. En outre, nous avons classifié les synapses actives et nous avons identifié un recrutement différentiel de certains types de synapses en fonction du paradigme de plasticité utilisé. Comme l'organisation des protéines synaptiques à l'intérieur de domaines nanométriques des synapses joue un rôle central dans la force et la plasticité synaptiques, nous résolvons l'organisation des protéines d'échafaudage présynaptiques (Bassoon, RIM1/2) et postsynaptiques (PSD95, Homer1c) en utilisant la nanoscopie STED (Déplétion par émission stimulée). Nous avons quantifié l'organisation synaptique à l'aide d'une analyse statistique de la distance entre objets basée sur Python (pySODA). Nous montrons que les stimuli induisant la plasticité modifient de manière différentielle l'organisation de ces protéines. En particulier, les protéines PSD95 et Bassoon présentent un changement d'organisation dépendant d'un traitement induisant une potentiation synaptique ou une dépression synaptique. De plus, à l'aide d'approches d'apprentissage automatique non supervisées, nous révélons la riche diversité des sous-types de protéines synaptiques présentant un remodelage différentiel. Pour étudier le lien entre l'architecture des protéines synaptiques et la force synaptique, nous avons combiné l'imagerie fonctionnelle et l'imagerie à super-résolution. Nous avons donc utilisé une approche d'apprentissage automatique pour optimiser les paramètres d'imagerie des cellules vivantes pour l'imagerie à haute résolution et nous avons combiné cela avec l'optimisation des paramètres de déblocage du glutamate pour sonder les signaux calciques correspondants. Notre approche permet de caractériser la population de synapses en fonction de leur taux d'activité et de leur organisation de protéines synaptiques et devrait fournir une base pour explorer davantage les divers mécanismes moléculaires de la plasticité synaptique. / Learning and memory at the cellular and molecular levels are characterized by modulation of synaptic strength, involving the recruitment and re-localization of proteins within specific nanoscale synaptic domains. Most studies investigating the mechanisms of synaptic plasticity have been focussed on specific synapses, lacking a broad view of the diversity of synaptic changes in strength and protein re-organization across neural circuits. We use a combination of functional and super-resolution optical imaging in dissociated hippocampal cultures and artificial intelligence tools to classify the diversity of synapses, based on their functional and organizational characteristics. We measured synaptic activity using wide field microscopy to record miniature synaptic calcium transients (MSCTs) in neurons expressing the fluorescent calcium sensor GCaMP6f. We developed a deep learning approach to detect and segment these calcium events. Our results show that the amplitude and frequency of miniature calcium events are modulated by prior levels of circuit activity. In addition, we classified active synapses and identify differential recruitment of certain calcium dynamics depending on the plasticity paradigm used. To link the nanoscale organization of synaptic proteins with synaptic strength and plasticity, we optically resolved the organization of presynaptic (Bassoon, RIM1/2) and postsynaptic (PSD95, Homer1c) scaffolding proteins using STED (Stimulated Emission Depletion) nanoscopy. Using Python-based statistical object distance analysis (pySODA), we show that plasticity-inducing stimuli differentially alter the spatial organization of these proteins. In particular, PSD95 and Bassoon proteins show a treatment-dependent change in organization, associated either with synaptic potentiation or depression. Furthermore, using unsupervised machine learning approaches, we reveal the rich diversity of synaptic protein subtypes exhibiting differential remodeling. To investigate further the link between synaptic protein architecture and synaptic function, we aimed to combine functional and super-resolution imaging. We therefore used a machine learning approach to optimize live-cell imaging parameters for time-lapse imaging and combined this with the optimization of glutamate uncaging parameters to probe corresponding calcium signals. Our approach allows to characterize the population of synapses in terms of their activity rate and synaptic protein organization, providing a basis for further exploring the diverse molecular mechanisms of synaptic plasticity.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/107403
Date11 November 2023
CreatorsWiesner, Theresa
ContributorsDe Koninck, Paul, Lavoie-Cardinal, Flavie
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xx, 242 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds