• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 10
  • 1
  • Tagged with
  • 30
  • 30
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'un microscope super-résolution pour l'imagerie de l'activité neuronale

Deschênes, Andréanne 01 February 2021 (has links)
L’étude de la neurotransmission et de la plasticité synaptique à l’échelle biomoléculaire dans des cellules vivantes nécessite des outils qui permettent la visualisation et la localisation d’une grande variété de protéines synaptiques ainsi que d’autres composantes. La transparence des neurones, la taille nanométrique des structures d’intérêt et leur compacité motivent le choix des modalités d’imagerie pouvant servir à étudier ces phénomènes. La microscopie à super-résolution en fluorescence produit des images ayant une résolution de localisation de l’ordre du nanomètre d’échantillons marqués. Toutefois, cette technique ne permet d’observer que les structures ayant été marquées. C’est pourquoi nous voulons la combiner à une technique ne nécessitant aucun marquage afin d’obtenir le plus d’information possible au sujet de la structure des échantillons. L’imagerie de phase quantitative est une technique sans-marquage qui utilise l’indice de réfraction comme agent de contraste intrinsèque pour cartographier en 3D le contenu cellulaire. Le but principal de ce projet est de concevoir et construire un montage de microscopie de phase quantitative et de l’intégrer à un microscope STED existant de façon à créer un nouveau système d’imagerie multimodale. La performance de ce système sera ensuite caractérisée et sa capacité à produire des images multimodales de synapses de cellules vivantes sera évaluée. Ce projet est un premier pas vers la création d’un outil qui pourrait permettre de simultanément mesurer de façon très précise la position de structures marquées en 2D et 3D et cartographier l’indice de réfraction des cellules en 3D afin de situer les structures marquées dans leur environnement. / The study of neurotransmission at the biomolecular level in live cells requires tools that allow the simultaneous visualisation and localization of a variety of neuronal proteins at their scale: the nanometric scale. In order to do so, an imaging approach offering high spatial and temporal resolution combined to low invasiveness is required. STED microscopy is an optical super-resolution fluorescence microscopy technique that produces images of labelled samples with a spatial resolution below 50 nm in living cells. However, since it is based on the detection of fluorescent molecules, labeling of the structures of interestis necessary and non-labeled structures are invisible for this type of microscope. Therefore, we want to combine it to a label-free optical microscopy technique to maximize the information that can be obtained about the global structure of the samples of interest: optical diffraction tomography (ODT). This approach uses refractive index as an intrinsic contrast agent to produce 3D maps of the cell’s internal contents.The main goal of this project is to design and build a quantitative phase imaging system and to integrate it onto an existing STED microscope to create a novel multimodal super-resolution imaging system. The performance of the microscope will then be characterized. This project is a first step towards the creation of a tool that could eventually allow simultaneous precise2D and 3D mapping of labelled structures and label-free 3D mapping of the sample’s refractive index to situate marked structures in their surroundings.
2

Quantitative assessment of synaptic plasticity at the molecular scale with multimodal microscopy and computational tools

Wiesner, Theresa 22 December 2022 (has links)
L'apprentissage et la mémoire aux niveaux cellulaire et moléculaire se caractérisent par la modulation de la force synaptique en recrutant et relocalisant des protéines synaptiques à l'échelle nanométrique. La plupart des études portant sur les mécanismes de la plasticité synaptique se sont concentrées sur des synapses spécifiques, manquant ainsi d'une vue d'ensemble de la diversité des changements de force synaptique et de la réorganisation des protéines dans les circuits neuronaux. Nous utilisons une combinaison d'imagerie fonctionnelle et à super résolution dans des cultures dissociées d'hippocampe et des outils d'intelligence artificielle pour classifier la diversité de synapses en fonction de leurs caractéristiques fonctionnelles et organisationnelles. Nous avons mesuré l'activité synaptique en utilisant la microscopie à grand champ pour enregistrer des événements calciques dans des neurones exprimant le senseur calcique fluorescent GCaMP6f. Nous avons développé une approche d'apprentissage profond pour détecter et segmenter ces événements calciques. Nous montrons la modulation de l'amplitude et de la fréquence des événements calciques en fonction de l'activité neuronale. En outre, nous avons classifié les synapses actives et nous avons identifié un recrutement différentiel de certains types de synapses en fonction du paradigme de plasticité utilisé. Comme l'organisation des protéines synaptiques à l'intérieur de domaines nanométriques des synapses joue un rôle central dans la force et la plasticité synaptiques, nous résolvons l'organisation des protéines d'échafaudage présynaptiques (Bassoon, RIM1/2) et postsynaptiques (PSD95, Homer1c) en utilisant la nanoscopie STED (Déplétion par émission stimulée). Nous avons quantifié l'organisation synaptique à l'aide d'une analyse statistique de la distance entre objets basée sur Python (pySODA). Nous montrons que les stimuli induisant la plasticité modifient de manière différentielle l'organisation de ces protéines. En particulier, les protéines PSD95 et Bassoon présentent un changement d'organisation dépendant d'un traitement induisant une potentiation synaptique ou une dépression synaptique. De plus, à l'aide d'approches d'apprentissage automatique non supervisées, nous révélons la riche diversité des sous-types de protéines synaptiques présentant un remodelage différentiel. Pour étudier le lien entre l'architecture des protéines synaptiques et la force synaptique, nous avons combiné l'imagerie fonctionnelle et l'imagerie à super-résolution. Nous avons donc utilisé une approche d'apprentissage automatique pour optimiser les paramètres d'imagerie des cellules vivantes pour l'imagerie à haute résolution et nous avons combiné cela avec l'optimisation des paramètres de déblocage du glutamate pour sonder les signaux calciques correspondants. Notre approche permet de caractériser la population de synapses en fonction de leur taux d'activité et de leur organisation de protéines synaptiques et devrait fournir une base pour explorer davantage les divers mécanismes moléculaires de la plasticité synaptique. / Learning and memory at the cellular and molecular levels are characterized by modulation of synaptic strength, involving the recruitment and re-localization of proteins within specific nanoscale synaptic domains. Most studies investigating the mechanisms of synaptic plasticity have been focussed on specific synapses, lacking a broad view of the diversity of synaptic changes in strength and protein re-organization across neural circuits. We use a combination of functional and super-resolution optical imaging in dissociated hippocampal cultures and artificial intelligence tools to classify the diversity of synapses, based on their functional and organizational characteristics. We measured synaptic activity using wide field microscopy to record miniature synaptic calcium transients (MSCTs) in neurons expressing the fluorescent calcium sensor GCaMP6f. We developed a deep learning approach to detect and segment these calcium events. Our results show that the amplitude and frequency of miniature calcium events are modulated by prior levels of circuit activity. In addition, we classified active synapses and identify differential recruitment of certain calcium dynamics depending on the plasticity paradigm used. To link the nanoscale organization of synaptic proteins with synaptic strength and plasticity, we optically resolved the organization of presynaptic (Bassoon, RIM1/2) and postsynaptic (PSD95, Homer1c) scaffolding proteins using STED (Stimulated Emission Depletion) nanoscopy. Using Python-based statistical object distance analysis (pySODA), we show that plasticity-inducing stimuli differentially alter the spatial organization of these proteins. In particular, PSD95 and Bassoon proteins show a treatment-dependent change in organization, associated either with synaptic potentiation or depression. Furthermore, using unsupervised machine learning approaches, we reveal the rich diversity of synaptic protein subtypes exhibiting differential remodeling. To investigate further the link between synaptic protein architecture and synaptic function, we aimed to combine functional and super-resolution imaging. We therefore used a machine learning approach to optimize live-cell imaging parameters for time-lapse imaging and combined this with the optimization of glutamate uncaging parameters to probe corresponding calcium signals. Our approach allows to characterize the population of synapses in terms of their activity rate and synaptic protein organization, providing a basis for further exploring the diverse molecular mechanisms of synaptic plasticity.
3

Development of a miniaturized microscope for depth-scanning imaging at subcellular resolution in freely behaving animals

Bagramyan, Arutyun 06 February 2021 (has links)
Le fonctionnement du cerveau humain est fascinant. En seulement quelques millisecondes, des milliards de neurones synchronisés perçoivent, traitent et redirigent les informations permettant le contrôle de notre corps, de nos sentiments et de nos pensées. Malheureusement, notre compréhension du cerveau reste limitée et de multiples questions physiologiques demeurent. Comment sont exactement reliés le fonctionnement neuronal et le comportement humain ? L’imagerie de l’activité neuronale au moyen de systèmes miniatures est l’une des voies les plus prometteuses permettant d’étudier le cerveau des animaux se déplaçant librement. Cependant, le développement de ces outils n’est pas évident et de multiples compromis techniques doivent être faits pour arriver à des systèmes suffisamment petits et légers. Les outils actuels ont donc souvent des limitations concernant leurs caractéristiques physiques et optiques. L’un des problèmes majeur est le manque d’une lentille miniature électriquement réglable et à faible consommation d’énergie permettant l’imagerie avec un balayage en profondeur. Dans cette thèse, nous proposons un nouveau type de dispositif d’imagerie miniature qui présente de multiples avantages mécaniques, électriques et optiques par rapport aux systèmes existants. Le faible poids, la petite dimension, la capacité de moduler électriquement la distance focale à l’aide d’une lentille à cristaux liquides (CL) et la capacité d’imager des structures fines sont au cœur des innovations proposées. Dans un premier temps, nous présenterons nos travaux (théoriques et expérimentaux) de conception, assemblage et optimisation de la lentille à CL accordable (TLCL, pour tunable liquid crystal lens). Deuxièmement, nous présenterons la preuve de concept macroscopique du couplage optique entre la TLCL et la lentille à gradient d’indice (GRIN, pour gradient index) en forme d’une tige. Utilisant le même système, nous démontrerons la capacité de balayage en profondeur dans le cerveau des animaux anesthésiés. Troisièmement, nous montrerons un dispositif d’imagerie (2D) miniature avec de nouvelles caractéristiques mécaniques et optiques permettant d’imager de fines structures neuronales dans des tranches de tissus cérébraux fixes. Enfin, nous présenterons le dispositif miniaturisé, avec une TLCL intégrée. Grâce à notre système, nous obtenons ≈ 100 µm d’ajustement électrique de la profondeur d’imagerie qui permet d’enregistrer l’activité de fines structures neuronales lors des différents comportements (toilettage, marche, etc.) de la souris. / The functioning of the human brain is fascinating. In only a few milliseconds, billions of finely tuned and synchronized neurons perceive, process and exit the information that drives our body, our feelings and our thoughts. Unfortunately, our understating of the brain is limited and multiple physiological questions remain. How exactly are related neural functioning and human behavior ? The imaging of the neuronal activity by means of miniaturized systems is one of the most promising avenues allowing to study the brain of the freely moving subjects. However, the development of these tools is not obvious and multiple technical trade-offs must be made to build a system that is sufficiently small and light. Therefore, the available tools have different limitations regarding their physical and optical characteristics. One of the major problems is the lack of an electrically adjustable and energy-efficient miniature lens allowing to scan in depth. In this thesis, we propose a new type of miniature imaging device that has multiple mechanical, electrical and optical advantages over existing systems. The low weight, the small size, the ability to electrically modulate the focal distance using a liquid crystal (LC) lens and the ability to image fine structures are among the proposed innovations. First, we present our work (theoretical and experimental) of design, assembling and optimization of the tunable LC lens (TLCL). Second, we present the macroscopic proof-of-concept optical coupling between the TLCL and the gradient index lens (GRIN) in the form of a rod. Using the same system, we demonstrate the depth scanning ability in the brain of anaesthetized animals. Third, we show a miniature (2D) imaging device with new mechanical and optical features allowing to image fine neural structures in fixed brain tissue slices. Finally, we present a state-of-the-art miniaturized device with an integrated TLCL. Using our system, we obtain a ≈ 100 µm electrical depth adjustment that allows to record the activity of fine neuronal structures during the various behaviours (grooming, walking, etc.) of the mouse.
4

Microscope 3D à très large champ de vue et à haute résolution isotrope

Akitegetse, Cléophace 21 December 2021 (has links)
La connectomique est un des plus grands défis dans la compréhension et le diagnostic des maladies du cerveau. En effet, les mauvaises connexions et le mauvais fonctionnement des circuits du cerveau sont à l'origine de nombreuses maladies neurologiques. Ceci peut être causé par des défauts génétiques, un dérèglement en cours de développement ou à une dégénérescence à un stade ultérieur de la vie. Pour étudier les changements morphologiques à la base des maladies mentales et neurologiques, les technologies d'imagerie actuelles sont limitées. Du fait de la difficulté à acheminer la lumière à l'intérieur de grands volumes de tissus, les études se font bien souvent à partir d'images bidimensionnelles de coupes histologiques et résultent, dans de nombreux cas, à des informations spatiales incomplètes. Dans ce projet, nous avons adopté une stratégie qui permet d'obtenir des images 3D de grands volumes à haute résolution, et ce, sans coupe histologique. D'une part, des techniques de transparisation ont été utilisées afin de minimiser la diffusion de la lumière dans les échantillons de tissus. D'autre part, pour une imagerie plus rapide, nous avons conçu un microscope de fluorescence à feuillet lumineux, à large champ de vue et à haute résolution. Les rayons d'un faisceau laser afocal sont déviés par un axicon pour interagir entre eux et former, dans l'échantillon, une fine aiguille lumineuse qui forme un feuillet lumineux une fois balayée à très grande vitesse dans un plan. Le signal de fluorescence émanant de la section illuminée par le feuillet est collecté selon un axe perpendiculaire par une caméra scientifique CMOS. Cette stratégie a permis de surpasser les systèmes déjà existants en fournissant des images grand volume avec une résolution isotrope de l'ordre du micron. Enfin, ce nouvel outil nous a permis de faire des études précédemment impossibles et aura certainement un impact direct sur l'évaluation post-mortem et l'optimisation de traitements, la découverte de médicaments et l'identification des régions cibles pour les maladies neurodégénératives. / Connectomics is one of the biggest challenges in understanding and diagnosing brain diseases. Indeed, many neurological diseases have their origins in a bad connection or a malfunction of brain circuits. This can be caused by genetic defects, developmental dysfunction or degeneration at a later stage of life. To study the morphological changes underlying mental and neurological diseases, current imaging technologies are limited. In fact, studies are often based on two-dimensional images of histological sections and result, in many cases, in incomplete spatial information. In this project, we adopted a strategy that allows us to obtain 3D images of large volumes at high resolution, without any histological section. On the one hand, optical clearing techniques were used to minimize light scattering in tissue samples. On the other hand, for faster imaging, we have designed a fluorescence light sheet microscope with a large field of view and high resolution. The rays of an afocal laser beam are deflected by an axicon (conical prism) to interact with each other and form, in the sample, a thin needle-shaped beam which, when swept at a very high speed along an axis, forms a light sheet. The fluorescence signal from the section illuminated by the light sheet is collected along a perpendicular axis by a scientific CMOS camera. This strategy has surpassed existing systems by providing large volume images with an isotropic micronic resolution. Finally, this new tool has allowed us to make previously impossible studies and will certainly have a direct impact on postmortem evaluation and treatment optimization, drug discovery and identification of target areas for neurodegenerative diseases.
5

Development of a miniaturized microscope for depth-scanning imaging at subcellular resolution in freely behaving animals

Bagramyan, Arutyun 06 February 2021 (has links)
Le fonctionnement du cerveau humain est fascinant. En seulement quelques millisecondes, des milliards de neurones synchronisés perçoivent, traitent et redirigent les informations permettant le contrôle de notre corps, de nos sentiments et de nos pensées. Malheureusement, notre compréhension du cerveau reste limitée et de multiples questions physiologiques demeurent. Comment sont exactement reliés le fonctionnement neuronal et le comportement humain ? L’imagerie de l’activité neuronale au moyen de systèmes miniatures est l’une des voies les plus prometteuses permettant d’étudier le cerveau des animaux se déplaçant librement. Cependant, le développement de ces outils n’est pas évident et de multiples compromis techniques doivent être faits pour arriver à des systèmes suffisamment petits et légers. Les outils actuels ont donc souvent des limitations concernant leurs caractéristiques physiques et optiques. L’un des problèmes majeur est le manque d’une lentille miniature électriquement réglable et à faible consommation d’énergie permettant l’imagerie avec un balayage en profondeur. Dans cette thèse, nous proposons un nouveau type de dispositif d’imagerie miniature qui présente de multiples avantages mécaniques, électriques et optiques par rapport aux systèmes existants. Le faible poids, la petite dimension, la capacité de moduler électriquement la distance focale à l’aide d’une lentille à cristaux liquides (CL) et la capacité d’imager des structures fines sont au cœur des innovations proposées. Dans un premier temps, nous présenterons nos travaux (théoriques et expérimentaux) de conception, assemblage et optimisation de la lentille à CL accordable (TLCL, pour tunable liquid crystal lens). Deuxièmement, nous présenterons la preuve de concept macroscopique du couplage optique entre la TLCL et la lentille à gradient d’indice (GRIN, pour gradient index) en forme d’une tige. Utilisant le même système, nous démontrerons la capacité de balayage en profondeur dans le cerveau des animaux anesthésiés. Troisièmement, nous montrerons un dispositif d’imagerie (2D) miniature avec de nouvelles caractéristiques mécaniques et optiques permettant d’imager de fines structures neuronales dans des tranches de tissus cérébraux fixes. Enfin, nous présenterons le dispositif miniaturisé, avec une TLCL intégrée. Grâce à notre système, nous obtenons ≈ 100 µm d’ajustement électrique de la profondeur d’imagerie qui permet d’enregistrer l’activité de fines structures neuronales lors des différents comportements (toilettage, marche, etc.) de la souris. / The functioning of the human brain is fascinating. In only a few milliseconds, billions of finely tuned and synchronized neurons perceive, process and exit the information that drives our body, our feelings and our thoughts. Unfortunately, our understating of the brain is limited and multiple physiological questions remain. How exactly are related neural functioning and human behavior ? The imaging of the neuronal activity by means of miniaturized systems is one of the most promising avenues allowing to study the brain of the freely moving subjects. However, the development of these tools is not obvious and multiple technical trade-offs must be made to build a system that is sufficiently small and light. Therefore, the available tools have different limitations regarding their physical and optical characteristics. One of the major problems is the lack of an electrically adjustable and energy-efficient miniature lens allowing to scan in depth. In this thesis, we propose a new type of miniature imaging device that has multiple mechanical, electrical and optical advantages over existing systems. The low weight, the small size, the ability to electrically modulate the focal distance using a liquid crystal (LC) lens and the ability to image fine structures are among the proposed innovations. First, we present our work (theoretical and experimental) of design, assembling and optimization of the tunable LC lens (TLCL). Second, we present the macroscopic proof-of-concept optical coupling between the TLCL and the gradient index lens (GRIN) in the form of a rod. Using the same system, we demonstrate the depth scanning ability in the brain of anaesthetized animals. Third, we show a miniature (2D) imaging device with new mechanical and optical features allowing to image fine neural structures in fixed brain tissue slices. Finally, we present a state-of-the-art miniaturized device with an integrated TLCL. Using our system, we obtain a ≈ 100 µm electrical depth adjustment that allows to record the activity of fine neuronal structures during the various behaviours (grooming, walking, etc.) of the mouse.
6

Analyse d'évènements neurobiologiques hétérogènes à l'aide d'outils computationnels

Ferreira, Aymeric 17 October 2023 (has links)
NOTICE EN COURS DE TRAITEMENT / L'imagerie cérébrale englobe un éventail de techniques qui permettent la collecte de données neurobiologiques abondantes présentant de l'hétérogénéité dans leur composition chimique. Pour analyser et décrire leur complexité, de nombreuses mesures morphométriques sont extraites afin de caractériser les événements observés. Cependant, sur la base de ces caractéristiques morphométriques, les données semblent souvent homogènes lors de l'analyse. Pour saisir et comprendre la diversité de ces phénomènes biologiques, nous avons choisi d'utiliser des méthodes computationnelles, notamment la réduction de dimension des données et le regroupement. Dans cette thèse, nous présenterons deux exemples d'application. La première partie est consacrée à l'étude de l'hétérogénéité des cellules en migration dans le cerveau en fonction de leur dynamique migratoire. La migration cellulaire est un phénomène important dans le développement du cerveau, notamment dans le cadre des troubles neurodéveloppementaux. Les précurseurs neuronaux, appelés neuroblastes, changent de formes lors de leur migration. Il existe deux phases pour ce processus, une phase stationnaire et une phase migratoire. L'objectif de cette étude est de déterminer si ces populations de neuroblastes peuvent être séparées sur la base de leurs propriétés migratoires mais également d'utiliser des méthodes d'analyses statistiques pour trouver les différentes sous-populations afin de déterminer lesquelles sont communes. Enfin, nous avons étudié les propriétés migratoires de ces différentes populations des neuroblastes en venant perturber la migration à l'aide de modifications génétique ou environnementale. La seconde partie porte sur l'étude de la plasticité structurelle, qui fait référence à la capacité qu'ont deux neurones à former une connexion, appelée synapse, qui peut se renforcer ou s'affaiblir. Ces changements synaptiques sont essentiels pour les processus d'apprentissage et de mémoire. En examinant des images de dendrites du bulbe olfactif prises avec un microscope confocal, on observe des protrusions sur la surface de la dendrite qui servent à recevoir les entrées synaptiques. Pour analyser ces images, nous avons développé un pipeline computationnel destiné à prétraiter les images et extraire les épines dendritiques. À la suite de la reconstruction 3D de la dendrite, nous avons extrait les épines et calculé plusieurs métriques, telles que la longueur et la surface de l'épine, des indicateurs couramment utilisés dans l'analyse des épines dendritiques. En procédant à une réduction de la dimensionnalité du jeu de données et à son partitionnement, nous avons relié la morphologie de chacune de ces sous-populations à leurs propriétés structurelles. Enfin, nous avons comparé le groupe contrôle et le groupe expérimental dans le cas de trois expériences olfactives, deux tâches de renforcement, et une de déprivation, qui ont conduit à des changements de plasticité. Les résultats montrent que la morphologie des épines ou leurs densités sont affectées par ces différentes conditions. En résumé, nous avons développé des outils computationnels permettant de révéler l'hétérogénéité des neurones en développement en fonction de leur dynamique migratoire et de leurs propriétés structurelles. / Brain imaging encompasses a range of techniques that enable the collection of abundant neurobiological data that presents heterogeneity in their chemical composition. To analyse and describe their complexity, numerous morphometric metrics are extracted to characterise the observed events. However, based on these morphometric features, the data often appear homogeneous during analysis. To grasp and understand the diversity of these biological phenomena, we have chosen to use computational methods including dimension reduction of data and clustering. In this thesis, we will present two application examples. The first part is devoted to the study of the heterogeneity of migrating neuronal cells based on their migratory dynamics. Cell migration is an important phenomenon in brain development, particularly in the context of neurodevelopmental disorders. Neuronal precursors, called neuroblasts, change shape during their migration. There are two phases for this process, so-called stationary phase and a migratory phase. The aim of this study is to determine whether neuroblasts can be separated to different sub-populations based on their migratory properties and to use statistical analysis methods to find the different subpopulations and determine which ones are common. Finally, we have studied the migratory properties of these different neuroblast populations by disrupting migration using genetic or environmental modifications. The second part focuses on the study of synaptic plasticity, which refers to the capacity of two neurons to form a connection, called a synapse, which can strengthen or weaken. These changes are central to the synaptic remodelling that occurs during the learning and memory phase. From images of dendrites, taken with a confocal microscope in the olfactory bulb, we have set up a computational pipeline to perform image pre-processing and then extract dendritic spines, which are protrusions on the surface of the dendrite that serve to receive synaptic inputs. After 3D reconstruction of the dendrite, these spines are extracted, and several metrics are calculated, including the length and surface area of the spine, which are standard metrics in spine analysis. After dimension reduction of the dataset and clustering, we have linked the morphology of each of these subpopulations to their structural properties. Finally, we have compared the control group and the experimental group in the case of three experiments that led to plasticity changes. The results show that the morphology of spines or their densities are affected by these different conditions. In summary, we have developed computational tools that reveal the heterogeneity of developing neurons based on their migratory dynamics and structural properties.
7

Développement et utilisation de la microscopie holographique numérique polychromatique

Larivière-Loiselle, Céline 12 August 2021 (has links)
La microscopie holographique numérique (DHM) est une technique d'imagerie polyvalente prometteuse pour l'identification de biomarqueurs de maladies psychiatriques majeures. Les images obtenues par DHM sont toutefois affectées par le bruit cohérent, qui entrave entre autres la visualisation de petites ramifications nerveuses dans les tissus neuronaux. Le projet présenté dans ce mémoire tâche d'affranchir la DHM de ce défaut grâce à une approche dite polychromatique exploitant un laser à longueur d'onde modulable. Des cultures neuronales de rat et des cellules minces ont été analysées au moyen de cette approche, permettant de révéler de fins détails, tels que des dendrites et des organites. Finalement, dans l'objectif de mesurer des réponses cellulaires de façon dynamique, la méthode a été automatisée et optimisée. La stratégie proposée ici augure favorablement pour l'étude de la connectivité neuronale, et le montage peut être adapté pour des applications additionnelles de la DHM en biologie cellulaire. / Digital holographic microscopy (DHM) is a promising versatile imaging technique for the identification of biomarkers of major psychiatric illnesses. However, images obtained by DHM are affected by coherent noise, which among other things prevents from properly distinguishing nerve branches in neural tissue. The project presented in this thesis aims to remove this defect thanks to a socalled polychromatic approach using a laser with modulable wave lengths. Using this approach, neuronal cultures and thin cells were imaged, revealing fine details, such as dendrites and cell organelles. The setup was then optimized to measure dynamical cellular responses. The strategy proposed here bodes well for the study of neuronal connectivity and the setup can be adapted for additional DHM applications in cellularbiology.
8

Apprendre de données positives et non étiquetées : application à la segmentation et la détection d'évènements calciques

Leclerc, Gabriel 12 August 2021 (has links)
Deux types de neurotransmission se produisent dans les neurones du cerveau : la transmission évoquée et la transmission spontanée. Contrairement à la transmission évoquée, le rôle de la transmission spontanée sur la plasticité synaptique - un mécanisme utilisé pour doter le cerveau de capacités d'apprentissage et de mémorisation - reste incertain. Les neurotransmissions spontanées sont localisées et se produisent aléatoirement dans les synapses des neurones. Lorsqu'un tel événement spontané se produit, ce que l'on appelle un influx synaptique miniature d'ions calcium (miniature Synaptic Ca²⁺ Transient, mSCT), des ions calcium messagers secondaires pénètrent dans la synapse, activant les voies de signalisation en aval de la plasticité synaptique. L'utilisation de l'imagerie calcique du neurone in vitro permet la visualisation spatiotemporelle de l'entrée des ions calcium. Les vidéos calciques qui en résultent permettent une étude quantitative de l'impact du mSCT sur la plasticité synaptique. Cependant, la localisation des mSCTs dans l'imagerie du calcium est difficile en raison de leur petite taille, de leur faible intensité par rapport au bruit de l'imagerie et de leur caractère aléatoire inhérent. Dans ce mémoire, nous présentons une méthode d'analyse quantitative à grande échelle des vidéos d'imagerie calcique limitant la variabilité induite par les interventions humaines pour obtenir des données probantes, dans le but de caractériser l'impact des mSCTs sur la plasticité synaptique. En nous basant sur un outil semi-automatique de détection à seuil d'intensité (Intensity Thresholded Detection, ITD), nous sommes capables de générer des données pour entraîner un réseau pleinement convolutionnel (Fully Convolutional Network, FCN) afin de détecter rapidement et automatiquement les mSCTs à partir de vidéos calciques. En utilisant les segmentations bruitées de l'ITD comme données d'entraînement, combinées à un schéma d'entraînement positif (P) et non étiqueté (Unlabeled, U), les performances du FCN surpassent ITD. Le FCN détecte des mSCTs de faible intensité non détectés auparavant par ITD et offre une segmentation supérieure à ITD. Nous avons ensuite caractérisé l'impact des paramètres PU tels que le nombre de P et le ratio P:U. Le FCN entraîné est intégré dans une routine tout-en-un pour permettre une analyse à grande échelle des mSCTs. La routine offre la détection, la segmentation, la caractérisation et la visualisation des mSCTs ainsi qu'une solution logicielle pour gérer plusieurs vidéos avec différentes métadonnées. / Two types of neurotransmission occur in brain's neurons: evoked transmission and spontaneous transmission. Unlike the former, the role of spontaneous transmission on synaptic plasticity - a mechanism used to endow the brain learning and memory abilities - remain unclear. Spontaneous neurotransmissions are localized and randomly happening in neuron's synapses. When such spontaneous events happen, so-called miniature synaptic Ca²⁺ transients(mSCT), second messenger calcium ions entered the spine, activating downstream signaling pathways of synaptic plasticity. Using calcium imaging of in vitro neuron enable spatiotemporal visualization of the entry of calcium ions. Resulting calcium videos enable quantitative study of mSCT's impact on synaptic plasticity. However, mSCT localization in calcium imaging can be challenging due to their small size, their low intensity compared with the imaging noise and their inherent randomness. In this master's thesis, we present a method for quantitative high-throughput analysis of calcium imaging videos that limits the variability induced by human interventions to obtain evidence for characterizing the impact of mSCTs on synaptic plasticity. Based on a semi-automatic intensity thresholded detection (ITD) tool, we are able to generate data to train a fully convolutional neural network (FCN) to rapidly and automaticaly detect mSCT from calcium videos. Using ITD noisy segmentations as training data combine with a positive and unlabeled (PU) training schema, we leveraged FCN performances and could even detect previously undetected low instensity mSCTs missed by ITD. The FCN also provide better segmentation than ITD. We then characterized the impact of PU parameters such as the number of P and the ratio P:U. The trained FCN is bundled in a all-in-one pipeline to permit a high-thoughtput analysis of mSCT. The pipeline offers detection, segmentation, characterization and visualization of mSCTs as well as a software solution to manage multiple videos with different metadatas.
9

Etude des interactions entre les neuro-images et le droit : les manières dont les neuroscientifiques mobilisent les effets produits par les techniques de neuro-imageries au sein de la justice pénale.

Michiels, Valentine 27 September 2019 (has links)
Ce mémoire est réalisé sur base de l’analyse d’une décision de justice provenant des Etats-Unis, à travers la mobilisation de la théorie de l’acteur-réseau. L’objectif est d’étudier les manières dont les techniques de neuro-imageries produisent leurs effets, ainsi que les mécanismes utilisés par les acteurs neuroscientifiques en vue de mobiliser ces techniques et leurs effets devant la Cour. Une revue de littérature traitant des interactions déjà existantes entre, d’une part le secteur des neurosciences et des neuro-images, et d’autre part celui de la justice pénale, nous a permis de mettre en exergue plusieurs points d’intérêts liants ces différents domaines, afin de démontrer que des éléments neuroscientifiques sont déjà présents dans le cadre des procès pénaux. Au sein de notre analyse, pour répondre à notre question de recherche, nous avons tenté de mettre en évidence les manières dont les éléments de « la science en action » ont été exploités pour rendre les techniques de neuro-imageries et leurs effets plus légitimes devant la justice pénale.
10

Neuroimagerie et pharmacothérapie de la démence atypique-Étude morphologique de la variante sémantique de l'aphasie primaire progressive et revue systématique de la pharmacothérapie en dégénérescence lobaire fronto-temporale

Bouchard, Louis-Olivier January 2016 (has links)
Les démences sont un enjeu majeur de santé. La dégénérescence lobaire fronto-temporale (DLFT), deuxième forme la plus prévalente de démence chez les personnes âgées de moins de 65 ans, inclut entre autres la variante sémantique de l’aphasie primaire progressive (svPPA), une maladie qui affecte particulièrement et initialement le langage. Anatomiquement, on sait déjà qu’on retrouve en svPPA une atrophie principalement marquée au niveau temporal, davantage à gauche et en antérieur. La connaissance des atteintes de la matière blanche est toutefois moins étoffée pour l’instant. Au niveau thérapeutique, il existe une controverse quant à l’approche à privilégier en DLFT : plusieurs molécules ont été étudiées, plusieurs sont prescrites et pourtant il n’y a ni consensus, ni recommandation à cet effet. Nos objectifs dans ce mémoire sont donc d’abord de mieux caractériser les atteintes cérébrales de la matière blanche et de la matière grise chez les patients atteints de svPPA, par une étude tractographique et volumétrique, et ensuite d’évaluer l’efficacité de la pharmacothérapie chez les patients avec DLFT en termes d’effet sur la cognition et sur des symptômes neuropsychiatriques, grâce à une revue systématique avec méta-analyse. En imagerie, notre étude a montré une diminution de la diffusion au niveau du fascicule longitudinal supérieur gauche, de la capsule externe gauche, du cingulum droit et du fascicule unciné bilatéralement et une atrophie plus marquée en temporal gauche, ainsi qu’au niveau de l’amygdale et des cortex fusiforme et entorhinal. En pharmacothérapie, aucune médication n’a démontré d’effet sur la cognition globale, mais certaines molécules ont montré un bénéfice potentiel sur le langage, l’impulsivité et la reconnaissance des émotions. Ce mémoire a ainsi permis des avancées au niveau de la caractérisation des atteintes cérébrales en svPPA et de faire le point sur l’état de la littérature en pharmacothérapie de la DLFT. / Dementia is a major health issue. Frontotemporal lobar degeneration (FTLD), the second most common dementia in individuals under 65 years of age, includes the semantic variant of primary progressive aphasia (svPPA), a disease affecting mainly and initially language. Anatomically, we know that svPPA patients show cortical atrophy, markedly in the temporal lobes, more in the left hemisphere and anteriorly. However, our knowledge of white matter damage is less developed. As for FTLD pharmacotherapies, there remains much controversy. Many molecules have been studied, some are currently prescribed, but there still is no consensus, nor any recommendation to this effect. Our objectives in this memoir were first to better characterize cerebral damage for white and grey matter in svPPA patients by means of a tractographic and volumetric study, and secondly to assess the effect on global cognition and specific neuropsychiatric symptoms of pharmacotherapy in FTLD patients, with a systematic review and meta-analysis. Imaging results show a diminution of fractional anisotropic diffusion in the left superior longitudinal fasciculus, external capsule, right cingulum and bilateral uncinate fasciculi. They also show atrophy, markedly in the left temporal lobe, amygdala, fusiform and entorhinal cortices. As for pharmacotherapy results, no medication was shown to have any beneficial effects on global cognition, but some drugs may improve language, impulsivity and emotion recognition. This memoir has indeed improved the characterization of cerebral damage in the svPPA and reviewed thoroughly the literature on pharmacotherapy in FLTD.

Page generated in 0.0432 seconds