Return to search

[pt] SEGMENTAÇÃO SEMÂNTICA DE VAGAS DE EMPREGO: ESTUDO COMPARATIVO DE ALGORITMOS CLÁSSICOS DE APRENDIZADO DE MÁQUINA / [en] SEMANTIC JOB VACANCY SEGMENTATION: COMPARATIVE STUDY OF CLASSICAL MACHINE LEARNING ALGORITHMS

[pt] Este trabalho demonstra como web mining, processamento de linguagem natural e aprendizado de máquina podem ser combinados para melhorar a compreensão de vagas de emprego segmentando semanticamente os textos de suas descrições. Para atingir essa finalidade, foram coletados dados textuais de três grandes sites de vagas de emprego: Catho, LinkedIn e VAGAS.com.br. Baseado na literatura, este trabalho propôe uma estrutura semântica simplificada em que cada sentença da descrição da vaga de emprego pode pertencer a uma dessas classes: Responsabilidades, Requisitos, Benefícios e Outros. De posse dessa ideia, a tarefa de segmentação semântica pode ser repensada como uma segmentação de sentenças seguida de uma classificação. Usando o Python como ferramenta, são experimentadas algumas formas de construção de atributos a partir de textos, tanto léxicas quanto semânticas, e quatro algoritmos clássicos de aprendizado de máquina: Naive Bayes, Regressão Logística, Máquina de Vetores de Suporte e Floresta Aleatória. Como resultados, este trabalho traz um classificador (Regressão Logística com representação binária) com 95.58 porcento de acurácia, sem sobreajuste de modelo e sem degenerar as classificações por desbalanceio de classes, que é comparável ao estado da arte para Classificação de Texto. Esse classificador foi treinado e validado usando dados do Catho, mas foi testado também nos dados do VAGAS.com.br (88.60 porcento) e do LinkedIn (91.14 porcento), apresentando uma evidência de que seu aprendizado é generalizável para dados de outros sites. Além disso, o classificador foi usado para segmentação semântica das vagas de emprego e obteve uma métrica Pk de 3.67 porcento e uma métrica WindowDiff de 4.78 porcento, que é comparável ao estado da arte de Segmentação de Texto. Por fim, vale salientar duas contribuições indiretas deste trabalho: 1) uma estrutura para pensar e analisar vagas de emprego e 2) uma indicação de que algoritmos clássicos também podem alcançar o estado da arte e, portanto, sempre devem experimentados. / [en] This dissertation demonstrates how web mining, natural language processing, and machine learning can be combined to improve understanding of job openings by semantically segmenting the texts of their descriptions. To achieve this purpose, textual data were collected from three major job sites: Catho, LinkedIn and VAGAS.com.br. Based on the literature, this work proposes a simplified semantic structure in which each sentence of the job description can belong to one of these classes: Responsibilities, Requirements, Benefits and Others. With this idea, the semantic segmentation task can be rethought as a sentence segmentation followed by a classification. Using Python as a tool, some ways of constructing features from texts are tried out, both lexical and semantic, and four classic machine learning algorithms: Naïve Bayes, Logistic Regression, Support Vector Machine, and Random Forest. As a result, this work presents a classifier (Logistic Regression with binary representation) with 95.58 percent accuracy, without model overfitting and without degeneration by class unbalance, which is comparable to state-of-the-art for Text Classification. This classifier was trained and validated using Catho data, but was also tested on VAGAS.com.br (88.60 percent) and LinkedIn (91.14 percent) data, providing evidence that its learning is generalizable to data from other sites. In addition, the classifier was used for semantic segmentation of job openings and obtained a Pk metric equals to 3.67 percent and a WindowDiff metric equals to 4.78 percent, which is comparable to state-of-the-art for Text Segmentation. Finally, it is worth highlighting two indirect contributions of this work: 1) a structure for thinking and analyzing job openings and 2) an indication that classical algorithms can also reach the state of the art and therefore should always be tried.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:49087
Date18 August 2020
CreatorsDAVID EVANDRO AMORIM MARTINS
ContributorsEDUARDO SANY LABER
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguageEnglish
TypeTEXTO

Page generated in 0.0024 seconds