Return to search

[en] OPTICAL CHARACTER RECOGNITION FOR AUTOMATED LICENSE PLATE RECOGNITION SYSTEMS / [pt] IDENTIFICAÇÃO DE CARACTERES PARA RECONHECIMENTO AUTOMÁTICO DE PLACAS VEICULARES

[pt] Sistemas de reconhecimento automático de placas (ALPR na sigla em inglês) são geralmente utilizados em aplicações como controle de tráfego, estacionamento, monitoração de faixas exclusivas entre outras aplicações. A estrutura básica de um sistema ALPR pode ser dividida em quatro etapas principais: aquisição da imagem, localização da placa em uma foto ou frame de vídeo; segmentação dos caracteres que compõe a placa; e reconhecimento destes caracteres. Neste trabalho focamos somente na etapa de reconhecimento. Para esta tarefa, utilizamos um Perceptron multiclasse, aprimorado pela técnica de geração de atributos baseada em entropia. Mostramos que é possível atingir resultados comparáveis com o estado da arte, com uma arquitetura leve e que permite aprendizado contínuo mesmo em equipamentos com baixo poder de processamento, tais como dispositivos móveis. / [en] ALPR systems are commonly used in applications such as traffic control, parking ticketing, exclusive lane monitoring and others. The basic structure of an ALPR system can be divided in four major steps: image acquisition, license plate localization in a picture or movie frame; character segmentation; and character recognition. In this work we ll focus solely on the recognition step. For this task, we used a multiclass Perceptron, enhanced by an entropy guided feature generation technique. We ll show that it s possible to achieve results on par with the state of the art solution, with a lightweight architecture that allows continuous learning, even on low processing power machines, such as mobile devices.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:28690
Date13 January 2017
CreatorsEDUARDO PIMENTEL DE ALVARENGA
ContributorsRUY LUIZ MILIDIU
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.0016 seconds