Return to search

Lexicographic refinements in possibilistic sequential decision-making models / Raffinements lexicographiques en prise de décision séquentielle possibiliste

Ce travail contribue à la théorie de la décision possibiliste et plus précisément à la prise de décision séquentielle dans le cadre de la théorie des possibilités, à la fois au niveau théorique et pratique. Bien qu'attrayante pour sa capacité à résoudre les problèmes de décision qualitatifs, la théorie de la décision possibiliste souffre d'un inconvénient important : les critères d'utilité qualitatives possibilistes comparent les actions avec les opérateurs min et max, ce qui entraîne un effet de noyade. Pour surmonter ce manque de pouvoir décisionnel, plusieurs raffinements ont été proposés dans la littérature. Les raffinements lexicographiques sont particulièrement intéressants puisqu'ils permettent de bénéficier de l'arrière-plan de l'utilité espérée, tout en restant "qualitatifs". Cependant, ces raffinements ne sont définis que pour les problèmes de décision non séquentiels. Dans cette thèse, nous présentons des résultats sur l'extension des raffinements lexicographiques aux problèmes de décision séquentiels, en particulier aux Arbres de Décision et aux Processus Décisionnels de Markov possibilistes. Cela aboutit à des nouveaux algorithmes de planification plus "décisifs" que leurs contreparties possibilistes. Dans un premier temps, nous présentons des relations de préférence lexicographiques optimistes et pessimistes entre les politiques avec et sans utilités intermédiaires, qui raffinent respectivement les utilités possibilistes optimistes et pessimistes. Nous prouvons que les critères proposés satisfont le principe de l'efficacité de Pareto ainsi que la propriété de monotonie stricte. Cette dernière garantit la possibilité d'application d'un algorithme de programmation dynamique pour calculer des politiques optimales. Nous étudions tout d'abord l'optimisation lexicographique des politiques dans les Arbres de Décision possibilistes et les Processus Décisionnels de Markov à horizon fini. Nous fournissons des adaptations de l'algorithme de programmation dynamique qui calculent une politique optimale en temps polynomial. Ces algorithmes sont basés sur la comparaison lexicographique des matrices de trajectoires associées aux sous-politiques. Ce travail algorithmique est complété par une étude expérimentale qui montre la faisabilité et l'intérêt de l'approche proposée. Ensuite, nous prouvons que les critères lexicographiques bénéficient toujours d'une fondation en termes d'utilité espérée, et qu'ils peuvent être capturés par des utilités espérées infinitésimales. La dernière partie de notre travail est consacrée à l'optimisation des politiques dans les Processus Décisionnels de Markov (éventuellement infinis) stationnaires. Nous proposons un algorithme d'itération de la valeur pour le calcul des politiques optimales lexicographiques. De plus, nous étendons ces résultats au cas de l'horizon infini. La taille des matrices augmentant exponentiellement (ce qui est particulièrement problématique dans le cas de l'horizon infini), nous proposons un algorithme d'approximation qui se limite à la partie la plus intéressante de chaque matrice de trajectoires, à savoir les premières lignes et colonnes. Enfin, nous rapportons des résultats expérimentaux qui prouvent l'efficacité des algorithmes basés sur la troncation des matrices. / This work contributes to possibilistic decision theory and more specifically to sequential decision-making under possibilistic uncertainty, at both the theoretical and practical levels. Even though appealing for its ability to handle qualitative decision problems, possibilisitic decision theory suffers from an important drawback: qualitative possibilistic utility criteria compare acts through min and max operators, which leads to a drowning effect. To overcome this lack of decision power, several refinements have been proposed in the literature. Lexicographic refinements are particularly appealing since they allow to benefit from the expected utility background, while remaining "qualitative". However, these refinements are defined for the non-sequential decision problems only. In this thesis, we present results on the extension of the lexicographic preference relations to sequential decision problems, in particular, to possibilistic Decision trees and Markov Decision Processes. This leads to new planning algorithms that are more "decisive" than their original possibilistic counterparts. We first present optimistic and pessimistic lexicographic preference relations between policies with and without intermediate utilities that refine the optimistic and pessimistic qualitative utilities respectively. We prove that these new proposed criteria satisfy the principle of Pareto efficiency as well as the property of strict monotonicity. This latter guarantees that dynamic programming algorithm can be used for calculating lexicographic optimal policies. Considering the problem of policy optimization in possibilistic decision trees and finite-horizon Markov decision processes, we provide adaptations of dynamic programming algorithm that calculate lexicographic optimal policy in polynomial time. These algorithms are based on the lexicographic comparison of the matrices of trajectories associated to the sub-policies. This algorithmic work is completed with an experimental study that shows the feasibility and the interest of the proposed approach. Then we prove that the lexicographic criteria still benefit from an Expected Utility grounding, and can be represented by infinitesimal expected utilities. The last part of our work is devoted to policy optimization in (possibly infinite) stationary Markov Decision Processes. We propose a value iteration algorithm for the computation of lexicographic optimal policies. We extend these results to the infinite-horizon case. Since the size of the matrices increases exponentially (which is especially problematic in the infinite-horizon case), we thus propose an approximation algorithm which keeps the most interesting part of each matrix of trajectories, namely the first lines and columns. Finally, we reports experimental results that show the effectiveness of the algorithms based on the cutting of the matrices.

Identiferoai:union.ndltd.org:theses.fr/2017TOU30269
Date31 October 2017
CreatorsEl Khalfi, Zeineb
ContributorsToulouse 3, Fargier, Hélène, Ben Amor, Nahla
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0109 seconds