Return to search

Classification Dynamique de données non-stationnaires :<br />Apprentissage et Suivi de Classes évolutives

La plupart des processus naturels ou artificiels ont des comportements évolutifs décrits par des données non-stationnaires. La problématique étudiée dans cette thèse concerne la classification dynamique de données non-stationnaires. Nous proposons une description générique de classifieurs dynamiques conçue à l'aide d'un réseau neuronal à architecture évolutive. Elle est élaborée en quatre procédures d'apprentissage : création, adaptation, fusion, et évaluation. Deux algorithmes sont développés à partir de cette description générique. Le premier est une nouvelle version de l'algorithme AUDyC (AUto-adaptive and Dynamical Clustering). Il utilise un modèle de mélange décrit suivant l'approche multimodale. Le second, nommé SAKM (Self-Adaptive Kernel Machine), est basé sur les SVM et méthodes à noyau. Ces deux algorithmes sont dotés de règles de mise à jour récursives permettant la modélisation adaptative et le suivi de classes évolutives. Ils disposent de capacités d'auto-adaptation en environnement dynamique et de bonnes performances en terme de convergence et de complexité algorithmique. Ces dernières sont prouvées théoriquement et montrées par la simulation des algorithmes.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00106968
Date28 June 2006
CreatorsAmadou Boubacar, Habiboulaye
PublisherUniversité des Sciences et Technologie de Lille - Lille I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds