• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles graphiques évidentiels

Boudaren, Mohamed El Yazid 12 January 2014 (has links) (PDF)
Les modélisations par chaînes de Markov cachées permettent de résoudre un grand nombre de problèmes inverses se posant en traitement d'images ou de signaux. En particulier, le problème de segmentation figure parmi les problèmes où ces modèles ont été le plus sollicités. Selon ces modèles, la donnée observable est considérée comme une version bruitée de la segmentation recherchée qui peut être modélisée à travers une chaîne de Markov à états finis. Des techniques bayésiennes permettent ensuite d'estimer cette segmentation même dans le contexte non-supervisé grâce à des algorithmes qui permettent d'estimer les paramètres du modèle à partir de l'observation seule. Les chaînes de Markov cachées ont été ultérieurement généralisées aux chaînes de Markov couples et triplets, lesquelles offrent plus de possibilités de modélisation tout en présentant des complexités de calcul comparables, permettant ainsi de relever certains défis que les modélisations classiques ne supportent pas. Un lien intéressant a également été établi entre les modèles de Markov triplets et la théorie de l'évidence de Dempster-Shafer, ce qui confère à ces modèles la possibilité de mieux modéliser les données multi-senseurs. Ainsi, dans cette thèse, nous abordons trois difficultés qui posent problèmes aux modèles classiques : la non-stationnarité du processus caché et/ou du bruit, la corrélation du bruit et la multitude de sources de données. Dans ce cadre, nous proposons des modélisations originales fondées sur la très riche théorie des chaînes de Markov triplets. Dans un premier temps, nous introduisons les chaînes de Markov à bruit M-stationnaires qui tiennent compte de l'aspect hétérogène des distributions de bruit s'inspirant des chaînes de Markov cachées M-stationnaires. Les chaînes de Markov cachée ML-stationnaires, quant à elles, considèrent à la fois la loi a priori et les densités de bruit non-stationnaires. Dans un second temps, nous définissons deux types de chaînes de Markov couples non-stationnaires. Dans le cadre bayésien, nous introduisons les chaînes de Markov couples M-stationnaires puis les chaînes de Markov couples MM-stationnaires qui considèrent la donnée stationnaire par morceau. Dans le cadre évidentiel, nous définissons les chaînes de Markov couples évidentielles modélisant l'hétérogénéité du processus caché par une fonction de masse. Enfin, nous présentons les chaînes de Markov multi-senseurs non-stationnaires où la fusion de Dempster-Shafer est employée à la fois pour modéliser la non-stationnarité des données (à l'instar des chaînes de Markov évidentielles cachées) et pour fusionner les informations provenant des différents senseurs (comme dans les champs de Markov multi-senseurs). Pour chacune des modélisations proposées, nous décrivons les techniques de segmentation et d'estimation des paramètres associées. L'intérêt de chacune des modélisations par rapport aux modélisations classiques est ensuite démontré à travers des expériences menées sur des données synthétiques et réelles
2

Classification Dynamique de données non-stationnaires :<br />Apprentissage et Suivi de Classes évolutives

Amadou Boubacar, Habiboulaye 28 June 2006 (has links) (PDF)
La plupart des processus naturels ou artificiels ont des comportements évolutifs décrits par des données non-stationnaires. La problématique étudiée dans cette thèse concerne la classification dynamique de données non-stationnaires. Nous proposons une description générique de classifieurs dynamiques conçue à l'aide d'un réseau neuronal à architecture évolutive. Elle est élaborée en quatre procédures d'apprentissage : création, adaptation, fusion, et évaluation. Deux algorithmes sont développés à partir de cette description générique. Le premier est une nouvelle version de l'algorithme AUDyC (AUto-adaptive and Dynamical Clustering). Il utilise un modèle de mélange décrit suivant l'approche multimodale. Le second, nommé SAKM (Self-Adaptive Kernel Machine), est basé sur les SVM et méthodes à noyau. Ces deux algorithmes sont dotés de règles de mise à jour récursives permettant la modélisation adaptative et le suivi de classes évolutives. Ils disposent de capacités d'auto-adaptation en environnement dynamique et de bonnes performances en terme de convergence et de complexité algorithmique. Ces dernières sont prouvées théoriquement et montrées par la simulation des algorithmes.
3

Modèles graphiques évidentiels / Evidential graphical models

Boudaren, Mohamed El Yazid 12 January 2014 (has links)
Les modélisations par chaînes de Markov cachées permettent de résoudre un grand nombre de problèmes inverses se posant en traitement d’images ou de signaux. En particulier, le problème de segmentation figure parmi les problèmes où ces modèles ont été le plus sollicités. Selon ces modèles, la donnée observable est considérée comme une version bruitée de la segmentation recherchée qui peut être modélisée à travers une chaîne de Markov à états finis. Des techniques bayésiennes permettent ensuite d’estimer cette segmentation même dans le contexte non-supervisé grâce à des algorithmes qui permettent d’estimer les paramètres du modèle à partir de l’observation seule. Les chaînes de Markov cachées ont été ultérieurement généralisées aux chaînes de Markov couples et triplets, lesquelles offrent plus de possibilités de modélisation tout en présentant des complexités de calcul comparables, permettant ainsi de relever certains défis que les modélisations classiques ne supportent pas. Un lien intéressant a également été établi entre les modèles de Markov triplets et la théorie de l’évidence de Dempster-Shafer, ce qui confère à ces modèles la possibilité de mieux modéliser les données multi-senseurs. Ainsi, dans cette thèse, nous abordons trois difficultés qui posent problèmes aux modèles classiques : la non-stationnarité du processus caché et/ou du bruit, la corrélation du bruit et la multitude de sources de données. Dans ce cadre, nous proposons des modélisations originales fondées sur la très riche théorie des chaînes de Markov triplets. Dans un premier temps, nous introduisons les chaînes de Markov à bruit M-stationnaires qui tiennent compte de l’aspect hétérogène des distributions de bruit s’inspirant des chaînes de Markov cachées M-stationnaires. Les chaînes de Markov cachée ML-stationnaires, quant à elles, considèrent à la fois la loi a priori et les densités de bruit non-stationnaires. Dans un second temps, nous définissons deux types de chaînes de Markov couples non-stationnaires. Dans le cadre bayésien, nous introduisons les chaînes de Markov couples M-stationnaires puis les chaînes de Markov couples MM-stationnaires qui considèrent la donnée stationnaire par morceau. Dans le cadre évidentiel, nous définissons les chaînes de Markov couples évidentielles modélisant l’hétérogénéité du processus caché par une fonction de masse. Enfin, nous présentons les chaînes de Markov multi-senseurs non-stationnaires où la fusion de Dempster-Shafer est employée à la fois pour modéliser la non-stationnarité des données (à l’instar des chaînes de Markov évidentielles cachées) et pour fusionner les informations provenant des différents senseurs (comme dans les champs de Markov multi-senseurs). Pour chacune des modélisations proposées, nous décrivons les techniques de segmentation et d’estimation des paramètres associées. L’intérêt de chacune des modélisations par rapport aux modélisations classiques est ensuite démontré à travers des expériences menées sur des données synthétiques et réelles / Hidden Markov chains (HMCs) based approaches have been shown to be efficient to resolve a wide range of inverse problems occurring in image and signal processing. In particular, unsupervised segmentation of data is one of these problems where HMCs have been extensively applied. According to such models, the observed data are considered as a noised version of the requested segmentation that can be modeled through a finite Markov chain. Then, Bayesian techniques such as MPM can be applied to estimate this segmentation even in unsupervised way thanks to some algorithms that make it possible to estimate the model parameters from the only observed data. HMCs have then been generalized to pairwise Markov chains (PMCs) and triplet Markov chains (TMCs), which offer more modeling possibilities while showing comparable computational complexities, and thus, allow to consider some challenging situations that the conventional HMCs cannot support. An interesting link has also been established between the Dempster-Shafer theory of evidence and TMCs, which give to these latter the ability to handle multisensor data. Hence, in this thesis, we deal with three challenging difficulties that conventional HMCs cannot handle: nonstationarity of the a priori and/or noise distributions, noise correlation, multisensor information fusion. For this purpose, we propose some original models in accordance with the rich theory of TMCs. First, we introduce the M-stationary noise- HMC (also called jumping noise- HMC) that takes into account the nonstationary aspect of the noise distributions in an analogous manner with the switching-HMCs. Afterward, ML-stationary HMC consider nonstationarity of both the a priori and/or noise distributions. Second, we tackle the problem of non-stationary PMCs in two ways. In the Bayesian context, we define the M-stationary PMC and the MM-stationary PMC (also called switching PMCs) that partition the data into M stationary segments. In the evidential context, we propose the evidential PMC in which the realization of the hidden process is modeled through a mass function. Finally, we introduce the multisensor nonstationary HMCs in which the Dempster-Shafer fusion has been used on one hand, to model the data nonstationarity (as done in the hidden evidential Markov chains) and on the other hand, to fuse the information provided by the different sensors (as in the multisensor hidden Markov fields context). For each of the proposed models, we describe the associated segmentation and parameters estimation procedures. The interest of each model is also assessed, with respect to the former ones, through experiments conducted on synthetic and real data
4

Predicting stock market trends using time-series classification with dynamic neural networks

Mocanu, Remus 09 1900 (has links)
L’objectif de cette recherche était d’évaluer l’efficacité du paramètre de classification pour prédire suivre les tendances boursières. Les méthodes traditionnelles basées sur la prévision, qui ciblent l’immédiat pas de temps suivant, rencontrent souvent des défis dus à des données non stationnaires, compromettant le modèle précision et stabilité. En revanche, notre approche de classification prédit une évolution plus large du cours des actions avec des mouvements sur plusieurs pas de temps, visant à réduire la non-stationnarité des données. Notre ensemble de données, dérivé de diverses actions du NASDAQ-100 et éclairé par plusieurs indicateurs techniques, a utilisé un mélange d'experts composé d'un mécanisme de déclenchement souple et d'une architecture basée sur les transformateurs. Bien que la méthode principale de cette expérience ne se soit pas révélée être aussi réussie que nous l'avions espéré et vu initialement, la méthodologie avait la capacité de dépasser toutes les lignes de base en termes de performance dans certains cas à quelques époques, en démontrant le niveau le plus bas taux de fausses découvertes tout en ayant un taux de rappel acceptable qui n'est pas zéro. Compte tenu de ces résultats, notre approche encourage non seulement la poursuite des recherches dans cette direction, dans lesquelles un ajustement plus précis du modèle peut être mis en œuvre, mais offre également aux personnes qui investissent avec l'aide de l'apprenstissage automatique un outil différent pour prédire les tendances boursières, en utilisant un cadre de classification et un problème défini différemment de la norme. Il est toutefois important de noter que notre étude est basée sur les données du NASDAQ-100, ce qui limite notre l’applicabilité immédiate du modèle à d’autres marchés boursiers ou à des conditions économiques variables. Les recherches futures pourraient améliorer la performance en intégrant les fondamentaux des entreprises et effectuer une analyse du sentiment sur l'actualité liée aux actions, car notre travail actuel considère uniquement indicateurs techniques et caractéristiques numériques spécifiques aux actions. / The objective of this research was to evaluate the classification setting's efficacy in predicting stock market trends. Traditional forecasting-based methods, which target the immediate next time step, often encounter challenges due to non-stationary data, compromising model accuracy and stability. In contrast, our classification approach predicts broader stock price movements over multiple time steps, aiming to reduce data non-stationarity. Our dataset, derived from various NASDAQ-100 stocks and informed by multiple technical indicators, utilized a Mixture of Experts composed of a soft gating mechanism and a transformer-based architecture. Although the main method of this experiment did not prove to be as successful as we had hoped and seen initially, the methodology had the capability in surpassing all baselines in certain instances at a few epochs, demonstrating the lowest false discovery rate while still having an acceptable recall rate. Given these results, our approach not only encourages further research in this direction, in which further fine-tuning of the model can be implemented, but also offers traders a different tool for predicting stock market trends, using a classification setting and a differently defined problem. It's important to note, however, that our study is based on NASDAQ-100 data, limiting our model's immediate applicability to other stock markets or varying economic conditions. Future research could enhance performance by integrating company fundamentals and conducting sentiment analysis on stock-related news, as our current work solely considers technical indicators and stock-specific numerical features.

Page generated in 0.1229 seconds