Spelling suggestions: "subject:"egmentation nonsupervisée"" "subject:"egmentation nonsupervisé""
1 |
Détection non-supervisée de contours et localisation de formes à l'aide de modèles statistiquesDestrempes, François January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Représentation, Segmentation et Appariement de Formes Visuelles 3D Utilisant le Laplacient et le Noyau de la ChaleurSharma, Avinash 29 October 2012 (has links) (PDF)
Analyse de la forme 3D est un sujet de recherche extrêmement actif dans les deux l'infographie et vision par ordinateur. Dans la vision par ordinateur, l'acquisition de formes et de modélisation 3D sont généralement le résultat du traitement des données complexes et des méthodes d'analyse de données. Il existe de nombreuses situations concrètes où une forme visuelle est modélisé par un nuage de points observés avec une variété de capteurs 2D et 3D. Contrairement aux données graphiques, les données sensorielles ne sont pas, dans le cas général, uniformément répartie sur toute la surface des objets observés et ils sont souvent corrompus par le bruit du capteur, les valeurs aberrantes, les propriétés de surface (diffusion, spécularités, couleur, etc), l'auto occlusions, les conditions d'éclairage variables. Par ailleurs, le même objet que l'on observe par différents capteurs, à partir de points de vue légèrement différents, ou à des moments différents cas peuvent donner la répartition des points tout à fait différentes, des niveaux de bruit et, plus particulièrement, les différences topologiques, par exemple, la fusion des mains. Dans cette thèse, nous présentons une représentation de multi-échelle des formes articulés et concevoir de nouvelles méthodes d'analyse de forme, en gardant à l'esprit les défis posés par les données de forme visuelle. En particulier, nous analysons en détail le cadre de diffusion de chaleur pour représentation multi-échelle de formes 3D et proposer des solutions pour la segmentation et d'enregistrement en utilisant les méthodes spectrales graphique et divers algorithmes d'apprentissage automatique, à savoir, le modèle de mélange gaussien (GMM) et le Espérance-Maximisation (EM). Nous présentons d'abord l'arrière-plan mathématique sur la géométrie différentielle et l'isomorphisme graphique suivie par l'introduction de la représentation spectrale de formes 3D articulés. Ensuite, nous présentons une nouvelle méthode non supervisée pour la segmentation de la forme 3D par l'analyse des vecteurs propres Laplacien de graphe. Nous décrivons ensuite une solution semi-supervisé pour la segmentation de forme basée sur un nouveau paradigme d'apprendre, d'aligner et de transférer. Ensuite, nous étendre la représentation de forme 3D à une configuration multi-échelle en décrivant le noyau de la chaleur cadre. Enfin, nous présentons une méthode d'appariement dense grâce à la représentation multi-échelle de la chaleur du noyau qui peut gérer les changements topologiques dans des formes visuelles et de conclure par une discussion détaillée et l'orientation future des travaux.
|
3 |
Modèles graphiques évidentielsBoudaren, Mohamed El Yazid 12 January 2014 (has links) (PDF)
Les modélisations par chaînes de Markov cachées permettent de résoudre un grand nombre de problèmes inverses se posant en traitement d'images ou de signaux. En particulier, le problème de segmentation figure parmi les problèmes où ces modèles ont été le plus sollicités. Selon ces modèles, la donnée observable est considérée comme une version bruitée de la segmentation recherchée qui peut être modélisée à travers une chaîne de Markov à états finis. Des techniques bayésiennes permettent ensuite d'estimer cette segmentation même dans le contexte non-supervisé grâce à des algorithmes qui permettent d'estimer les paramètres du modèle à partir de l'observation seule. Les chaînes de Markov cachées ont été ultérieurement généralisées aux chaînes de Markov couples et triplets, lesquelles offrent plus de possibilités de modélisation tout en présentant des complexités de calcul comparables, permettant ainsi de relever certains défis que les modélisations classiques ne supportent pas. Un lien intéressant a également été établi entre les modèles de Markov triplets et la théorie de l'évidence de Dempster-Shafer, ce qui confère à ces modèles la possibilité de mieux modéliser les données multi-senseurs. Ainsi, dans cette thèse, nous abordons trois difficultés qui posent problèmes aux modèles classiques : la non-stationnarité du processus caché et/ou du bruit, la corrélation du bruit et la multitude de sources de données. Dans ce cadre, nous proposons des modélisations originales fondées sur la très riche théorie des chaînes de Markov triplets. Dans un premier temps, nous introduisons les chaînes de Markov à bruit M-stationnaires qui tiennent compte de l'aspect hétérogène des distributions de bruit s'inspirant des chaînes de Markov cachées M-stationnaires. Les chaînes de Markov cachée ML-stationnaires, quant à elles, considèrent à la fois la loi a priori et les densités de bruit non-stationnaires. Dans un second temps, nous définissons deux types de chaînes de Markov couples non-stationnaires. Dans le cadre bayésien, nous introduisons les chaînes de Markov couples M-stationnaires puis les chaînes de Markov couples MM-stationnaires qui considèrent la donnée stationnaire par morceau. Dans le cadre évidentiel, nous définissons les chaînes de Markov couples évidentielles modélisant l'hétérogénéité du processus caché par une fonction de masse. Enfin, nous présentons les chaînes de Markov multi-senseurs non-stationnaires où la fusion de Dempster-Shafer est employée à la fois pour modéliser la non-stationnarité des données (à l'instar des chaînes de Markov évidentielles cachées) et pour fusionner les informations provenant des différents senseurs (comme dans les champs de Markov multi-senseurs). Pour chacune des modélisations proposées, nous décrivons les techniques de segmentation et d'estimation des paramètres associées. L'intérêt de chacune des modélisations par rapport aux modélisations classiques est ensuite démontré à travers des expériences menées sur des données synthétiques et réelles
|
4 |
Segmentation et reconaissance des gestes pour l'interaction homme-robot cognitive / Gesture Segmentation and Recognition for Cognitive Human-Robot InteractionSimao, Miguel 17 December 2018 (has links)
Cette thèse présente un cadre formel pour l'interaction Homme-robot (HRI), qui reconnaître un important lexique de gestes statiques et dynamiques mesurés par des capteurs portatifs. Gestes statiques et dynamiques sont classés séparément grâce à un processus de segmentation. Les tests expérimentaux sur la base de données de gestes UC2017 ont montré une haute précision de classification. La classification pas à pas en ligne utilisant des données brutes est fait avec des réseaux de neurones profonds « Long-Short Term Memory » (LSTM) et à convolution (CNN), et sont plus performants que les modèles statiques entraînés avec des caractéristiques spécialement conçues, au détriment du temps d'entraînement et d'inférence. La classification en ligne des gestes permet une classification prédictive avec réussit. Le rejet des gestes hors vocabulaire est proposé par apprentissage semi-supervisé par un réseau de neurones du type « Auxiliary Conditional Generative Adversarial Networks ». Le réseau propose a atteint une haute précision de rejet de les gestes non entraînés de la base de données UC2018 DualMyo. / This thesis presents a human-robot interaction (HRI) framework to classify large vocabularies of static and dynamic hand gestures, captured with wearable sensors. Static and dynamic gestures are classified separately thanks to the segmentation process. Experimental tests on the UC2017 hand gesture dataset showed high accuracy. In online frame-by-frame classification using raw incomplete data, Long Short-Term Memory (LSTM) deep networks and Convolutional Neural Networks (CNN) performed better than static models with specially crafted features at the cost of training and inference time. Online classification of dynamic gestures allows successful predictive classification. The rejection of out-of-vocabulary gestures is proposed to be done through semi-supervised learning of a network in the Auxiliary Conditional Generative Adversarial Networks framework. The proposed network achieved a high accuracy on the rejection of untrained patterns of the UC2018 DualMyo dataset.
|
5 |
Segmentation de documents administratifs en couches couleur / Segmentation of administrative document images into color layersCarel, Elodie 08 October 2015 (has links)
Les entreprises doivent traiter quotidiennement de gros volumes de documents papiers de toutes sortes. Automatisation, traçabilité, alimentation de systèmes d’informations, réduction des coûts et des délais de traitement, la dématérialisation a un impact économique évident. Pour respecter les contraintes industrielles, les processus historiques d’analyse simplifient les images grâce à une séparation fond/premier-plan. Cependant, cette binarisation peut être source d’erreurs lors des étapes de segmentation et de reconnaissance. Avec l’amélioration des techniques, la communauté d’analyse de documents a montré un intérêt croissant pour l’intégration d’informations colorimétriques dans les traitements, ceci afin d’améliorer leurs performances. Pour respecter le cadre imposé par notre partenaire privé, l’objectif était de mettre en place des processus non supervisés. Notre but est d’être capable d’analyser des documents même rencontrés pour la première fois quels que soient leurs contenus, leurs structures, et leurs caractéristiques en termes de couleurs. Les problématiques de ces travaux ont été d’une part l’identification d’un nombre raisonnable de couleurs principales sur une image ; et d’autre part, le regroupement en couches couleur cohérentes des pixels ayant à la fois une apparence colorimétrique très proche, et présentant une unité logique ou sémantique. Fournies sous forme d’un ensemble d’images binaires, ces couches peuvent être réinjectées dans la chaîne de dématérialisation en fournissant une alternative à l’étape de binarisation classique. Elles apportent en plus des informations complémentaires qui peuvent être exploitées dans un but de segmentation, de localisation, ou de description. Pour cela, nous avons proposé une segmentation spatio-colorimétrique qui permet d’obtenir un ensemble de régions locales perceptuellement cohérentes appelées superpixels, et dont la taille s’adapte au contenu spécifique des images de documents. Ces régions sont ensuite regroupées en couches couleur globales grâce à une analyse multi-résolution. / Industrial companies receive huge volumes of documents everyday. Automation, traceability, feeding information systems, reducing costs and processing times, dematerialization has a clear economic impact. In order to respect the industrial constraints, the traditional digitization process simplifies the images by performing a background/foreground separation. However, this binarization can lead to some segmentation and recognition errors. With the improvements of technology, the community of document analysis has shown a growing interest in the integration of color information in the process to enhance its performance. In order to work within the scope provided by our industrial partner in the digitization flow, an unsupervised segmentation approach was chosen. Our goal is to be able to cope with document images, even when they are encountered for the first time, regardless their content, their structure, and their color properties. To this end, the first issue of this project was to identify a reasonable number of main colors which are observable on an image. Then, we aim to group pixels having both close color properties and a logical or semantic unit into consistent color layers. Thus, provided as a set of binary images, these layers may be reinjected into the digitization chain as an alternative to the conventional binarization. Moreover, they also provide extra-information about colors which could be exploited for segmentation purpose, elements spotting, or as a descriptor. Therefore, we have proposed a spatio-colorimetric approach which gives a set of local regions, known as superpixels, which are perceptually meaningful. Their size is adapted to the content of the document images. These regions are then merged into global color layers by means of a multiresolution analysis.
|
6 |
Estimation de mouvement et segmentation<br />Partie I : Estimation de mouvement par ondelettes spatio-temporelles adaptées au mouvement.<br />Partie II : Segmentation et estimation de mouvement par modèles de Markov cachés et approche bayésienne dans les domaines direct et ondelette.Brault, Patrice 29 November 2005 (has links) (PDF)
La première partie de ce mémoire présente une nouvelle vision de l'estimation de mouvement, et donc de la compression, dans les séquences<br />vidéo. D'une part, nous avons choisi d'aborder l'estimation de mouvement à partir de familles d'ondelettes redondantes adaptées à différentes<br />transformations, dont, plus particulièrement, la vitesse. Ces familles, très peu connues, ont déjà été étudiées dans le cadre de la poursuite de<br />cibles. D'autre part, les standards de compression actuels comme MPEG4 prennent en compte une compression objet mais ne calculent toujours que de<br />simples vecteurs de mouvements de ``blocs''. Il nous a paru intéressant de chercher à mettre en oeuvre ces familles d'ondelettes car 1)<br />elle sont construites pour le calcul de paramètres sur plusieurs types de mouvement (rotation, vitesse, accélération) et 2) nous<br />pensons qu'une approche de l'estimation basée sur l'identification de trajectoires d'objets dans une scène est une solution intéressante pour les<br />méthodes futures de compression. En effet nous pensons que l'analyse et la compréhension des mouvements dans une scène est une voie pour des méthodes<br />de compression ``contextuelles'' performantes.<br /><br /><br /><br />La seconde partie présente deux développements concernant la segmentation non-supervisée dans une approche bayésienne. Le premier, destiné à réduire<br />les temps de calcul dans la segmentation de séquences vidéo, est basé sur une mise en oeuvre itérative, simple, de la segmentation. Il nous a aussi<br />permis de mettre une estimation de mouvement basée sur une segmentation ``région'' (voire objet). Le second est destiné à diminuer les temps de<br />segmentation d'images fixes en réalisant la segmentation dans le domaine des ondelettes. Ces deux développements sont basés sur une approche par<br />estimation bayésienne utilisant un modèle de champ aléatoire de Potts-Markov (PMRF) pour les étiquettes des pixels, dans le domaine direct, et pour<br />les coefficients d'ondelettes. Il utilise aussi un algorithme itératif de type MCMC (Markov Chain Monte Carlo) avec échantillonneur de Gibbs.<br />L'approche initiale, directe, utilise un modèle de Potts avec voisinage d'ordre un. Nous avons développé le modèle de Potts pour l'adapter à des<br />voisinages convenant aux orientations privilégiées des sous-bandes d'ondelettes. Ces réalisations apportent, à notre connaissance, des approches<br />nouvelles dans les méthodes de segmentation<br />non-supervisées.
|
7 |
Représentation et enregistrement de formes visuelles 3D à l'aide de Laplacien graphe et noyau de la chaleurSharma, Avinash 29 October 2012 (has links) (PDF)
Analyse de la forme 3D est un sujet de recherche extrêmement actif dans les deux l'infographie et vision par ordinateur. Dans la vision par ordinateur, l'acquisition de formes et de modélisation 3D sont généralement le résultat du traitement des données complexes et des méthodes d'analyse de données. Il existe de nombreuses situations concrètes où une forme visuelle est modélisé par un nuage de points observés avec une variété de capteurs 2D et 3D. Contrairement aux données graphiques, les données sensorielles ne sont pas, dans le cas général, uniformément répartie sur toute la surface des objets observés et ils sont souvent corrompus par le bruit du capteur, les valeurs aberrantes, les propriétés de surface (diffusion, spécularités, couleur, etc), l'auto occlusions, les conditions d'éclairage variables. Par ailleurs, le même objet que l'on observe par différents capteurs, à partir de points de vue légèrement différents, ou à des moments différents cas peuvent donner la répartition des points tout à fait différentes, des niveaux de bruit et, plus particulièrement, les différences topologiques, par exemple, la fusion des mains. Dans cette thèse, nous présentons une représentation de multi-échelle des formes articulés et concevoir de nouvelles méthodes d'analyse de forme, en gardant à l'esprit les défis posés par les données de forme visuelle. En particulier, nous analysons en détail le cadre de diffusion de chaleur pour représentation multi-échelle de formes 3D et proposer des solutions pour la segmentation et d'enregistrement en utilisant les méthodes spectrales graphique et divers algorithmes d'apprentissage automatique, à savoir, le modèle de mélange gaussien (GMM) et le Espérance-Maximisation (EM). Nous présentons d'abord l'arrière-plan mathématique sur la géométrie différentielle et l'isomorphisme graphique suivie par l'introduction de la représentation spectrale de formes 3D articulés. Ensuite, nous présentons une nouvelle méthode non supervisée pour la segmentation de la forme 3D par l'analyse des vecteurs propres Laplacien de graphe. Nous décrivons ensuite une solution semi-supervisé pour la segmentation de forme basée sur un nouveau paradigme d'apprendre, d'aligner et de transférer. Ensuite, nous étendre la représentation de forme 3D à une configuration multi-échelle en décrivant le noyau de la chaleur cadre. Enfin, nous présentons une méthode d'appariement dense grâce à la représentation multi-échelle de la chaleur du noyau qui peut gérer les changements topologiques dans des formes visuelles et de conclure par une discussion détaillée et l'orientation future des travaux.
|
8 |
Représentation et enregistrement de formes visuelles 3D à l'aide de Laplacien graphe et noyau de la chaleur / Representation & Registration of 3D Visual Shapes using Graph Laplacian and Heat KernelSharma, Avinash 29 October 2012 (has links)
Analyse de la forme 3D est un sujet de recherche extrêmement actif dans les deux l'infographie et vision par ordinateur. Dans la vision par ordinateur, l'acquisition de formes et de modélisation 3D sont généralement le résultat du traitement des données complexes et des méthodes d'analyse de données. Il existe de nombreuses situations concrètes où une forme visuelle est modélisé par un nuage de points observés avec une variété de capteurs 2D et 3D. Contrairement aux données graphiques, les données sensorielles ne sont pas, dans le cas général, uniformément répartie sur toute la surface des objets observés et ils sont souvent corrompus par le bruit du capteur, les valeurs aberrantes, les propriétés de surface (diffusion, spécularités, couleur, etc), l'auto occlusions, les conditions d'éclairage variables. Par ailleurs, le même objet que l'on observe par différents capteurs, à partir de points de vue légèrement différents, ou à des moments différents cas peuvent donner la répartition des points tout à fait différentes, des niveaux de bruit et, plus particulièrement, les différences topologiques, par exemple, la fusion des mains. Dans cette thèse, nous présentons une représentation de multi-échelle des formes articulés et concevoir de nouvelles méthodes d'analyse de forme, en gardant à l'esprit les défis posés par les données de forme visuelle. En particulier, nous analysons en détail le cadre de diffusion de chaleur pour représentation multi-échelle de formes 3D et proposer des solutions pour la segmentation et d'enregistrement en utilisant les méthodes spectrales graphique et divers algorithmes d'apprentissage automatique, à savoir, le modèle de mélange gaussien (GMM) et le Espérance-Maximisation (EM). Nous présentons d'abord l'arrière-plan mathématique sur la géométrie différentielle et l'isomorphisme graphique suivie par l'introduction de la représentation spectrale de formes 3D articulés. Ensuite, nous présentons une nouvelle méthode non supervisée pour la segmentation de la forme 3D par l'analyse des vecteurs propres Laplacien de graphe. Nous décrivons ensuite une solution semi-supervisé pour la segmentation de forme basée sur un nouveau paradigme d'apprendre, d'aligner et de transférer. Ensuite, nous étendre la représentation de forme 3D à une configuration multi-échelle en décrivant le noyau de la chaleur cadre. Enfin, nous présentons une méthode d'appariement dense grâce à la représentation multi-échelle de la chaleur du noyau qui peut gérer les changements topologiques dans des formes visuelles et de conclure par une discussion détaillée et l'orientation future des travaux. / 3D shape analysis is an extremely active research topic in both computer graphics and computer vision. In computer vision, 3D shape acquisition and modeling are generally the result of complex data processing and data analysis methods. There are many practical situations where a visual shape is modeled by a point cloud observed with a variety of 2D and 3D sensors. Unlike the graphical data, the sensory data are not, in the general case, uniformly distributed across the surfaces of the observed objects and they are often corrupted by sensor noise, outliers, surface properties (scattering, specularities, color, etc.), self occlusions, varying lighting conditions. Moreover, the same object that is observed by different sensors, from slightly different viewpoints, or at different time instances may yield completely different point distributions, noise levels and, most notably, topological differences, e.g., merging of hands. In this thesis we outline single and multi-scale representation of articulated 3D shapes and devise new shape analysis methods, keeping in mind the challenges posed by visual shape data. In particular, we discuss in detail the heat diffusion framework for multi-scale shape representation and propose solutions for shape segmentation and dense shape registration using the spectral graph methods and various other machine learning algorithms, namely, the Gaussian Mixture Model (GMM) and the Expectation Maximization (EM). We first introduce the mathematical background on differential geometry and graph isomorphism followed by the introduction of pose-invariant spectral embedding representation of 3D articulated shapes. Next we present a novel unsupervised method for visual shape segmentation by analyzing the Laplacian eigenvectors. We then outline a semi-supervised solution for shape segmentation based upon a new learn, align and transfer paradigm. Next we extend the shape representation to a multi-scale setup by outlining the heat-kernel framework. Finally, we present a topologically-robust dense shape matching method using the multi-scale heat kernel representation and conclude with a detailed discussion and future direction of work.
|
9 |
Modèles statistiques avancés pour la segmentation non supervisée des images dégradées de l'iris / Advanced statistical models for unsupervised segmentation of degraded iris imagesYahiaoui, Meriem 11 July 2017 (has links)
L'iris est considérée comme une des modalités les plus robustes et les plus performantes en biométrie à cause de ses faibles taux d'erreurs. Ces performances ont été observées dans des situations contrôlées, qui imposent des contraintes lors de l'acquisition pour l'obtention d'images de bonne qualité. Relâcher ces contraintes, au moins partiellement, implique des dégradations de la qualité des images acquises et par conséquent une réduction des performances de ces systèmes. Une des principales solutions proposées dans la littérature pour remédier à ces limites est d'améliorer l'étape de segmentation de l'iris. L'objectif principal de ce travail de thèse a été de proposer des méthodes originales pour la segmentation des images dégradées de l'iris. Les chaînes de Markov ont été déjà proposées dans la littérature pour résoudre des problèmes de segmentation d'images. Dans ce cadre, une étude de faisabilité d'une segmentation non supervisée des images dégradées d'iris en régions par les chaînes de Markov a été réalisée, en vue d'une future application en temps réel. Différentes transformations de l'image et différentes méthodes de segmentation grossière pour l'initialisation des paramètres ont été étudiées et comparées. Les modélisations optimales ont été introduites dans un système de reconnaissance de l'iris (avec des images en niveaux de gris) afin de produire une comparaison avec les méthodes existantes. Finalement une extension de la modélisation basée sur les chaînes de Markov cachées, pour une segmentation non supervisée des images d'iris acquises en visible, a été mise en place / Iris is considered as one of the most robust and efficient modalities in biometrics because of its low error rates. These performances were observed in controlled situations, which impose constraints during the acquisition in order to have good quality images. The renouncement of these constraints, at least partially, implies degradations in the quality of the acquired images and it is therefore a degradation of these systems’ performances. One of the main proposed solutions in the literature to take into account these limits is to propose a robust approach for iris segmentation. The main objective of this thesis is to propose original methods for the segmentation of degraded images of the iris. Markov chains have been well solicited to solve image segmentation problems. In this context, a feasibility study of unsupervised segmentation into regions of degraded iris images by Markov chains was performed. Different image transformations and different segmentation methods for parameters initialization have been studied and compared. Optimal modeling has been inserted in iris recognition system (with grayscale images) to produce a comparison with the existing methods. Finally, an extension of the modeling based on the hidden Markov chains has been developed in order to realize an unsupervised segmentation of the iris images acquired in visible light
|
10 |
Modèles graphiques évidentiels / Evidential graphical modelsBoudaren, Mohamed El Yazid 12 January 2014 (has links)
Les modélisations par chaînes de Markov cachées permettent de résoudre un grand nombre de problèmes inverses se posant en traitement d’images ou de signaux. En particulier, le problème de segmentation figure parmi les problèmes où ces modèles ont été le plus sollicités. Selon ces modèles, la donnée observable est considérée comme une version bruitée de la segmentation recherchée qui peut être modélisée à travers une chaîne de Markov à états finis. Des techniques bayésiennes permettent ensuite d’estimer cette segmentation même dans le contexte non-supervisé grâce à des algorithmes qui permettent d’estimer les paramètres du modèle à partir de l’observation seule. Les chaînes de Markov cachées ont été ultérieurement généralisées aux chaînes de Markov couples et triplets, lesquelles offrent plus de possibilités de modélisation tout en présentant des complexités de calcul comparables, permettant ainsi de relever certains défis que les modélisations classiques ne supportent pas. Un lien intéressant a également été établi entre les modèles de Markov triplets et la théorie de l’évidence de Dempster-Shafer, ce qui confère à ces modèles la possibilité de mieux modéliser les données multi-senseurs. Ainsi, dans cette thèse, nous abordons trois difficultés qui posent problèmes aux modèles classiques : la non-stationnarité du processus caché et/ou du bruit, la corrélation du bruit et la multitude de sources de données. Dans ce cadre, nous proposons des modélisations originales fondées sur la très riche théorie des chaînes de Markov triplets. Dans un premier temps, nous introduisons les chaînes de Markov à bruit M-stationnaires qui tiennent compte de l’aspect hétérogène des distributions de bruit s’inspirant des chaînes de Markov cachées M-stationnaires. Les chaînes de Markov cachée ML-stationnaires, quant à elles, considèrent à la fois la loi a priori et les densités de bruit non-stationnaires. Dans un second temps, nous définissons deux types de chaînes de Markov couples non-stationnaires. Dans le cadre bayésien, nous introduisons les chaînes de Markov couples M-stationnaires puis les chaînes de Markov couples MM-stationnaires qui considèrent la donnée stationnaire par morceau. Dans le cadre évidentiel, nous définissons les chaînes de Markov couples évidentielles modélisant l’hétérogénéité du processus caché par une fonction de masse. Enfin, nous présentons les chaînes de Markov multi-senseurs non-stationnaires où la fusion de Dempster-Shafer est employée à la fois pour modéliser la non-stationnarité des données (à l’instar des chaînes de Markov évidentielles cachées) et pour fusionner les informations provenant des différents senseurs (comme dans les champs de Markov multi-senseurs). Pour chacune des modélisations proposées, nous décrivons les techniques de segmentation et d’estimation des paramètres associées. L’intérêt de chacune des modélisations par rapport aux modélisations classiques est ensuite démontré à travers des expériences menées sur des données synthétiques et réelles / Hidden Markov chains (HMCs) based approaches have been shown to be efficient to resolve a wide range of inverse problems occurring in image and signal processing. In particular, unsupervised segmentation of data is one of these problems where HMCs have been extensively applied. According to such models, the observed data are considered as a noised version of the requested segmentation that can be modeled through a finite Markov chain. Then, Bayesian techniques such as MPM can be applied to estimate this segmentation even in unsupervised way thanks to some algorithms that make it possible to estimate the model parameters from the only observed data. HMCs have then been generalized to pairwise Markov chains (PMCs) and triplet Markov chains (TMCs), which offer more modeling possibilities while showing comparable computational complexities, and thus, allow to consider some challenging situations that the conventional HMCs cannot support. An interesting link has also been established between the Dempster-Shafer theory of evidence and TMCs, which give to these latter the ability to handle multisensor data. Hence, in this thesis, we deal with three challenging difficulties that conventional HMCs cannot handle: nonstationarity of the a priori and/or noise distributions, noise correlation, multisensor information fusion. For this purpose, we propose some original models in accordance with the rich theory of TMCs. First, we introduce the M-stationary noise- HMC (also called jumping noise- HMC) that takes into account the nonstationary aspect of the noise distributions in an analogous manner with the switching-HMCs. Afterward, ML-stationary HMC consider nonstationarity of both the a priori and/or noise distributions. Second, we tackle the problem of non-stationary PMCs in two ways. In the Bayesian context, we define the M-stationary PMC and the MM-stationary PMC (also called switching PMCs) that partition the data into M stationary segments. In the evidential context, we propose the evidential PMC in which the realization of the hidden process is modeled through a mass function. Finally, we introduce the multisensor nonstationary HMCs in which the Dempster-Shafer fusion has been used on one hand, to model the data nonstationarity (as done in the hidden evidential Markov chains) and on the other hand, to fuse the information provided by the different sensors (as in the multisensor hidden Markov fields context). For each of the proposed models, we describe the associated segmentation and parameters estimation procedures. The interest of each model is also assessed, with respect to the former ones, through experiments conducted on synthetic and real data
|
Page generated in 0.1286 seconds