"A wireless wearable battery-operated pulse oximeter has been developed in our laboratory for field triage applications. The wearable pulse oximeter, which uses a forehead-mounted sensor to provide arterial oxygen saturation (SpO2) and heart rate (HR) information, would enable field medics to monitor vital physiological information following critical injuries, thereby helping to prioritize life saving medical interventions. This study was undertaken to investigate if accelerometry (ACC)-based adaptive noise cancellation (ANC) is effective in minimizing SpO2 and HR errors induced during jogging to simulate certain motion artifacts expected to occur in the field. Preliminary tests confirmed that processing the motion corrupted photoplethysmographic (PPG) signals by simple Least-Mean-Square (LMS) and Recursive Least-Squares (RLS) ANC algorithms can help to improve the signal-to-noise ratio of motion-corrupted PPG signals, thereby reducing SpO2 and HR errors during jogging. The study showed also that the degree of improvement depends on filter order. In addition, we found that it would be more feasible to implement an LMS adaptive filter within an embedded microcontroller environment since the LMS algorithm requires significantly less operations."
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-2004 |
Date | 31 August 2007 |
Creators | Comtois, Gary W. |
Contributors | Yitzhak Mendelson, Advisor, , |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.002 seconds